Enhancing solids deposit prediction in gully pots with explainable hybrid models : A review

© 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 89(2024), 8 vom: 08. Apr., Seite 1891-1912
1. Verfasser: Ekechukwu, Chinedu (VerfasserIn)
Weitere Verfasser: Chatzirodou, Antonia, Beaumont, Hazel, Eyo, Eyo, Staddon, Chad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Review explainable hybrid models gully pots machine learning solids deposition prediction
LEADER 01000caa a22002652 4500
001 NLM371672457
003 DE-627
005 20240521234617.0
007 cr uuu---uuuuu
008 240429s2024 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2024.077  |2 doi 
028 5 2 |a pubmed24n1414.xml 
035 |a (DE-627)NLM371672457 
035 |a (NLM)38678398 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ekechukwu, Chinedu  |e verfasserin  |4 aut 
245 1 0 |a Enhancing solids deposit prediction in gully pots with explainable hybrid models  |b A review 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.04.2024 
500 |a Date Revised 21.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Authors This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/). 
520 |a Urban flooding has made it necessary to gain a better understanding of how well gully pots perform when overwhelmed by solids deposition due to various climatic and anthropogenic variables. This study investigates solids deposition in gully pots through the review of eight models, comprising four deterministic models, two hybrid models, a statistical model, and a conceptual model, representing a wide spectrum of solid depositional processes. Traditional models understand and manage the impact of climatic and anthropogenic variables on solid deposition but they are prone to uncertainties due to inadequate handling of complex and non-linear variables, restricted applicability, inflexibility and data bias. Hybrid models which integrate traditional models with data-driven approaches have proved to improve predictions and guarantee the development of uncertainty-proof models. Despite their effectiveness, hybrid models lack explainability. Hence, this study presents the significance of eXplainable Artificial Intelligence (XAI) tools in addressing the challenges associated with hybrid models. Finally, crossovers between various models and a representative workflow for the approach to solids deposition modelling in gully pots is suggested. The paper concludes that the application of explainable hybrid modeling can serve as a valuable tool for gully pot management as it can address key limitations present in existing models 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a explainable hybrid models 
650 4 |a gully pots 
650 4 |a machine learning 
650 4 |a solids deposition prediction 
700 1 |a Chatzirodou, Antonia  |e verfasserin  |4 aut 
700 1 |a Beaumont, Hazel  |e verfasserin  |4 aut 
700 1 |a Eyo, Eyo  |e verfasserin  |4 aut 
700 1 |a Staddon, Chad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 89(2024), 8 vom: 08. Apr., Seite 1891-1912  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnns 
773 1 8 |g volume:89  |g year:2024  |g number:8  |g day:08  |g month:04  |g pages:1891-1912 
856 4 0 |u http://dx.doi.org/10.2166/wst.2024.077  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 89  |j 2024  |e 8  |b 08  |c 04  |h 1891-1912