Self-Encapsulation of High-Entropy Alloy Nanoparticles inside Carbonized Wood for Highly Durable Electrocatalysis
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 28 vom: 02. Juli, Seite e2402391 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article carbonized wood defect engineering durable catalysts high‐entropy alloy nanoparticles hydrogen evolution reaction |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. High-entropy alloy nanoparticles (HEAs) show great potential in emerging electrocatalysis due to their combination and optimization of multiple elements. However, synthesized HEAs often exhibit a weak interface with the conductive substrate, hindering their applications in long-term catalysis and energy conversion. Herein, a highly active and durable electrocatalyst composed of quinary HEAs (PtNiCoFeCu) encapsulated inside the activated carbonized wood (ACW) is reported. The self-encapsulation of HEAs is achieved during Joule heating synthesis (2060 K, 2 s) where HEAs naturally nucleate at the defect sites. In the meantime, HEAs catalyze the deposition of mobile carbon atoms to form a protective few-layer carbon shell during the rapid quenching process, thus remarkably strengthening the interface stability between HEAs and ACW. As a result, the HEAsACW shows not only favorable activity with an overpotential of 7 mV at 10 mA cm-2 for hydrogen evolution but also negligible attenuation during a 500 h stability test, which is superior to most reported electrocatalysts. The design of self-encapsulated HEAs inside ACW provides a critical strategy to enhance both activity and stability, which is also applicable to many other energy conversion technologies |
---|---|
Beschreibung: | Date Revised 12.07.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202402391 |