|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM37155229X |
003 |
DE-627 |
005 |
20240507232624.0 |
007 |
cr uuu---uuuuu |
008 |
240426s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.4c00271
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1400.xml
|
035 |
|
|
|a (DE-627)NLM37155229X
|
035 |
|
|
|a (NLM)38666374
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Xiangnan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Preoxidation and Prilling Combined with Doping Strategy to Build High-Performance Recycling Spent LiFePO4 Materials
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.05.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Direct regeneration has gained much attention in LiFePO4 battery recycling due to its simplicity, ecofriendliness, and cost savings. However, the excess carbon residues from binder decomposition, conductive carbon, and coated carbon in spent LiFePO4 impair electrochemical performance of direct regenerated LiFePO4. Herein, we report a preoxidation and prilling collaborative doping strategy to restore spent LiFePO4 by direct regeneration. The excess carbon is effectively removed by preoxidation. At the same time, prilling not only reduces the size of the primary particles and shortens the diffusion distance of Li+ but also improves the tap density of the regenerated materials. Besides, the Li+ transmission of the regenerated LiFePO4 is further improved by Ti4+ doping. Compared with commercial LiFePO4, it has excellent low-temperature performance. The collaborative strategy provides a new insight into regenerating high-performance spent LiFePO4
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Tang, Xinyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ge, Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Qibin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Xiaoyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Wenfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Huishuang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Haijiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yin, Yanhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Shuting
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 40(2024), 18 vom: 07. Mai, Seite 9556-9562
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2024
|g number:18
|g day:07
|g month:05
|g pages:9556-9562
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.4c00271
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2024
|e 18
|b 07
|c 05
|h 9556-9562
|