Olive reproductive biology : implications for yield, compatibility conundrum, and environmental constraints

© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprintsoup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink serv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 75(2024), 14 vom: 23. Juli, Seite 4300-4313
1. Verfasser: Bashir, Muhammad Ajmal (VerfasserIn)
Weitere Verfasser: Bertamini, Massimo, Gottardini, Elena, Grando, Maria Stella, Faralli, Michele
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Review Olea europaea Fruit set pollination self-incompatibility
Beschreibung
Zusammenfassung:© The Author(s) 2024. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For commercial re-use, please contact reprintsoup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
Olive (Olea europaea L.) is an important Mediterranean tree species with a longstanding history of cultivation, boasting a diverse array of local cultivars. While traditional olive orchards are valued for their cultural and aesthetic significance, they often face economic sustainability challenges in the modern context. The success of both traditional and newly introduced cultivars (e.g. those obtained by cross-breeding) is hindered by self-incompatibility, a prevalent issue for this species that results in low fruit set when limited genetic diversity is present. Further, biological, environmental, and agronomic factors have been shown to interlink in shaping fertilization patterns, hence impacting on the final yield. Climatic conditions during pollination, such as excessive rainfall or high temperatures, can further exacerbate the problem. In this work, we provide an overview of the various factors that trigger the phenomenon of suboptimal fruit set in olive trees. This work provides a comprehensive understanding of the interplay among these factors, shedding light on potential mechanisms and pathways that contribute to the observed outcomes in the context of self-incompatibility in olive
Beschreibung:Date Completed 23.07.2024
Date Revised 24.07.2024
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erae190