Stabilizing the Bulk-Phase and Solid Electrolyte Interphase of Silicon Microparticle Anode by Constructing Gradient-Hierarchically Ordered Conductive Networks

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 30 vom: 24. Juli, Seite e2404360
1. Verfasser: Ma, Liang (VerfasserIn)
Weitere Verfasser: Fang, Youyou, Yang, Ni, Li, Ning, Chen, Lai, Cao, Duanyun, Lu, Yun, Huang, Qing, Song, Tinglu, Su, Yuefeng, Wu, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article LiF‐enriched sei bulk‐phase and interphase structure gradient‐hierarchically ordered conductive networks tempo‐cnf ti3c2tx
LEADER 01000caa a22002652 4500
001 NLM371460158
003 DE-627
005 20240726232306.0
007 cr uuu---uuuuu
008 240426s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202404360  |2 doi 
028 5 2 |a pubmed24n1482.xml 
035 |a (DE-627)NLM371460158 
035 |a (NLM)38657134 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ma, Liang  |e verfasserin  |4 aut 
245 1 0 |a Stabilizing the Bulk-Phase and Solid Electrolyte Interphase of Silicon Microparticle Anode by Constructing Gradient-Hierarchically Ordered Conductive Networks 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a The poor bulk-phase and interphase stability, attributable to adverse internal stress, impede the cycling performance of silicon microparticles (µSi) anodes and the commercial application for high-energy-density lithium-ion batteries. In this work, a groundbreaking gradient-hierarchically ordered conductive (GHOC) network structure, ingeniously engineered to enhance the stability of both bulk-phase and the solid electrolyte interphase (SEI) configurations of µSi, is proposed. Within the GHOC network architecture, two-dimensional (2D) transition metal carbides (Ti3C2Tx) act as a conductive "brick", establishing a highly conductive inner layer on µSi, while the porous outer layer, composed of one-dimensional (1D) Tempo-oxidized cellulose nanofibers (TCNF) and polyacrylic acid (PAA) macromolecule, functions akin to structural "rebar" and "concrete", effectively preserves the tightly interconnected conductive framework through multiple bonding mechanisms, including covalent and hydrogen bonds. Additionally, Ti3C2Tx enhances the development of a LiF-enriched SEI. Consequently, the µSi-MTCNF-PAA anode presents a high discharge capacity of 1413.7 mAh g-1 even after 500 cycles at 1.0 C. Moreover, a full cell, integrating LiNi0.8Mn0.1Co0.1O2 with µSi-MTCNF-PAA, exhibits a capacity retention rate of 92.0% following 50 cycles. This GHOC network structure can offer an efficacious pathway for stabilizing both the bulk-phase and interphase structure of anode materials with high volumetric strain 
650 4 |a Journal Article 
650 4 |a LiF‐enriched sei 
650 4 |a bulk‐phase and interphase structure 
650 4 |a gradient‐hierarchically ordered conductive networks 
650 4 |a tempo‐cnf 
650 4 |a ti3c2tx 
700 1 |a Fang, Youyou  |e verfasserin  |4 aut 
700 1 |a Yang, Ni  |e verfasserin  |4 aut 
700 1 |a Li, Ning  |e verfasserin  |4 aut 
700 1 |a Chen, Lai  |e verfasserin  |4 aut 
700 1 |a Cao, Duanyun  |e verfasserin  |4 aut 
700 1 |a Lu, Yun  |e verfasserin  |4 aut 
700 1 |a Huang, Qing  |e verfasserin  |4 aut 
700 1 |a Song, Tinglu  |e verfasserin  |4 aut 
700 1 |a Su, Yuefeng  |e verfasserin  |4 aut 
700 1 |a Wu, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 30 vom: 24. Juli, Seite e2404360  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:30  |g day:24  |g month:07  |g pages:e2404360 
856 4 0 |u http://dx.doi.org/10.1002/adma.202404360  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 30  |b 24  |c 07  |h e2404360