CS2DIPs : Unsupervised HSI Super-Resolution Using Coupled Spatial and Spectral DIPs

In recent years, fusing high spatial resolution multispectral images (HR-MSIs) and low spatial resolution hyperspectral images (LR-HSIs) has become a widely used approach for hyperspectral image super-resolution (HSI-SR). Various unsupervised HSI-SR methods based on deep image prior (DIP) have gaine...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 3090-3101
1. Verfasser: Fang, Yuan (VerfasserIn)
Weitere Verfasser: Liu, Yipeng, Chi, Chong-Yung, Long, Zhen, Zhu, Ce
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM371457351
003 DE-627
005 20240503232630.0
007 cr uuu---uuuuu
008 240426s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3390582  |2 doi 
028 5 2 |a pubmed24n1396.xml 
035 |a (DE-627)NLM371457351 
035 |a (NLM)38656842 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Yuan  |e verfasserin  |4 aut 
245 1 0 |a CS2DIPs  |b Unsupervised HSI Super-Resolution Using Coupled Spatial and Spectral DIPs 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In recent years, fusing high spatial resolution multispectral images (HR-MSIs) and low spatial resolution hyperspectral images (LR-HSIs) has become a widely used approach for hyperspectral image super-resolution (HSI-SR). Various unsupervised HSI-SR methods based on deep image prior (DIP) have gained wide popularity thanks to no pre-training requirement. However, DIP-based methods often demonstrate mediocre performance in extracting latent information from the data. To resolve this performance deficiency, we propose a coupled spatial and spectral deep image priors (CS2DIPs) method for the fusion of an HR-MSI and an LR-HSI into an HR-HSI. Specifically, we integrate the nonnegative matrix-vector tensor factorization (NMVTF) into the DIP framework to jointly learn the abundance tensor and spectral feature matrix. The two coupled DIPs are designed to capture essential spatial and spectral features in parallel from the observed HR-MSI and LR-HSI, respectively, which are then used to guide the generation of the abundance tensor and spectral signature matrix for the fusion of the HSI-SR by mode-3 tensor product, meanwhile taking some inherent physical constraints into account. Free from any training data, the proposed CS2DIPs can effectively capture rich spatial and spectral information. As a result, it exhibits much superior performance and convergence speed over most existing DIP-based methods. Extensive experiments are provided to demonstrate its state-of-the-art overall performance including comparison with benchmark peer methods 
650 4 |a Journal Article 
700 1 |a Liu, Yipeng  |e verfasserin  |4 aut 
700 1 |a Chi, Chong-Yung  |e verfasserin  |4 aut 
700 1 |a Long, Zhen  |e verfasserin  |4 aut 
700 1 |a Zhu, Ce  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 3090-3101  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:3090-3101 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3390582  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 3090-3101