Multi-Stage Network With Geometric Semantic Attention for Two-View Correspondence Learning
The removal of outliers is crucial for establishing correspondence between two images. However, when the proportion of outliers reaches nearly 90%, the task becomes highly challenging. Existing methods face limitations in effectively utilizing geometric transformation consistency (GTC) information a...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 24., Seite 3031-3046
|
1. Verfasser: |
Lin, Shuyuan
(VerfasserIn) |
Weitere Verfasser: |
Chen, Xiao,
Xiao, Guobao,
Wang, Hanzi,
Huang, Feiran,
Weng, Jian |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Schlagworte: | Journal Article |