Fine-Grained Essential Tensor Learning for Robust Multi-View Spectral Clustering

Multi-view subspace clustering (MVSC) has drawn significant attention in recent study. In this paper, we propose a novel approach to MVSC. First, the new method is capable of preserving high-order neighbor information of the data, which provides essential and complicated underlying relationships of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 02., Seite 3145-3160
1. Verfasser: Peng, Chong (VerfasserIn)
Weitere Verfasser: Kang, Kehan, Chen, Yongyong, Kang, Zhao, Chen, Chenglizhao, Cheng, Qiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM371457270
003 DE-627
005 20250104233658.0
007 cr uuu---uuuuu
008 240426s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3388969  |2 doi 
028 5 2 |a pubmed24n1651.xml 
035 |a (DE-627)NLM371457270 
035 |a (NLM)38656843 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Peng, Chong  |e verfasserin  |4 aut 
245 1 0 |a Fine-Grained Essential Tensor Learning for Robust Multi-View Spectral Clustering 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multi-view subspace clustering (MVSC) has drawn significant attention in recent study. In this paper, we propose a novel approach to MVSC. First, the new method is capable of preserving high-order neighbor information of the data, which provides essential and complicated underlying relationships of the data that is not straightforwardly preserved by the first-order neighbors. Second, we design log-based nonconvex approximations to both tensor rank and tensor sparsity, which are effective and more accurate than the convex approximations. For the associated shrinkage problems, we provide elegant theoretical results for the closed-form solutions, for which the convergence is guaranteed by theoretical analysis. Moreover, the new approximations have some interesting properties of shrinkage effects, which are guaranteed by elegant theoretical results. Extensive experimental results confirm the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Kang, Kehan  |e verfasserin  |4 aut 
700 1 |a Chen, Yongyong  |e verfasserin  |4 aut 
700 1 |a Kang, Zhao  |e verfasserin  |4 aut 
700 1 |a Chen, Chenglizhao  |e verfasserin  |4 aut 
700 1 |a Cheng, Qiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 02., Seite 3145-3160  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:02  |g pages:3145-3160 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3388969  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 02  |h 3145-3160