|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM371416922 |
003 |
DE-627 |
005 |
20240704232053.0 |
007 |
cr uuu---uuuuu |
008 |
240424s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202405052
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1460.xml
|
035 |
|
|
|a (DE-627)NLM371416922
|
035 |
|
|
|a (NLM)38652767
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhao, Sunce
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Reverse Atom Capture on Perovskite Surface Enabling Robust and Efficient Cathode for Protonic Ceramic Fuel Cells
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 04.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Protonic ceramic fuel cells (PCFCs) hold potential for sustainable energy conversion, yet their widespread application is hindered by the sluggish kinetics and inferior stability of cathode materials. Here, a facile and efficient reverse atom capture technique is developed to manipulate the surface chemistry of PrBa0.5Sr0.5Co1.5Fe0.5O5+ δ (PBSCF) cathode for PCFCs. This method successfully captures segregated Ba and Sr cations on the PBSCF surface using W species, creating a (Ba/Sr)(Co/Fe/W)O3- δ (BSCFW)PBSCF heterostructure. Benefiting from enhanced kinetics of proton-involved oxygen reduction reaction and strengthened chemical stability, the single cell using the optimized 2W-PBSCF cathode demonstrates an exceptional peak power density of 1.32 W cm-2 at 650 °C and maintains durable performance for 240 h. Theoretical calculations unveil that the BSCFW perovskite delivers lower oxygen vacancy formation energy, hydration energy, and proton transfer energy compared to the PBSCF perovskite. This protocol offers new insights into advanced atom capture techniques for sustainable energy infrastructures
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a heterostructure
|
650 |
|
4 |
|a proton involved oxygen reduction reaction
|
650 |
|
4 |
|a protonic ceramic fuel cells
|
650 |
|
4 |
|a reverse atom capture
|
650 |
|
4 |
|a surface segregation
|
700 |
1 |
|
|a Ma, Wenjia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Weiwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Yonglong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Ji
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Sijiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shu, Zhu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Beibei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Ling
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 27 vom: 02. Juli, Seite e2405052
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:27
|g day:02
|g month:07
|g pages:e2405052
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202405052
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 27
|b 02
|c 07
|h e2405052
|