Exploring Video Denoising in Thermal Infrared Imaging : Physics-Inspired Noise Generator, Dataset, and Model

We endeavor on a rarely explored task named thermal infrared video denoising. Perception in the thermal infrared significantly enhances the capabilities of machine vision. Nonetheless, noise in imaging systems is one of the factors that hampers the large-scale application of equipment. Existing ther...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 3839-3854
1. Verfasser: Cai, Lijing (VerfasserIn)
Weitere Verfasser: Dong, Xiangyu, Zhou, Kailai, Cao, Xun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM371415632
003 DE-627
005 20240627232326.0
007 cr uuu---uuuuu
008 240424s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3390404  |2 doi 
028 5 2 |a pubmed24n1453.xml 
035 |a (DE-627)NLM371415632 
035 |a (NLM)38652635 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cai, Lijing  |e verfasserin  |4 aut 
245 1 0 |a Exploring Video Denoising in Thermal Infrared Imaging  |b Physics-Inspired Noise Generator, Dataset, and Model 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We endeavor on a rarely explored task named thermal infrared video denoising. Perception in the thermal infrared significantly enhances the capabilities of machine vision. Nonetheless, noise in imaging systems is one of the factors that hampers the large-scale application of equipment. Existing thermal infrared denoising methods, primarily focusing on the image level, inadequately utilize time-domain information and insufficiently conduct investigation of system-level mixed noise, presenting the inferior ability in the video-recorded era; while video denoising methods, commonly applied to RGB cameras, exhibit uncertain effectiveness owing to substantial dissimilarities in the noise models and modalities between RGB and thermal infrared images. In sight of this, we initially revisit the imaging mechanism, while concurrently introducing a physics-inspired noise generator based on the sources and characteristics of system noise. Subsequently, a thermal infrared video denoising dataset consisting of 518 real-world videos is constructed. Lastly, we propose a denoising model called multi-domain infrared video denoising network, capable of concentrating features from the time, space, and frequency domains to restore high-fidelity videos. Extensive experiments demonstrate that the proposed method achieves state-of-the-art denoising quality and can be successfully applied to commercial cameras and downstream vision tasks, providing a new avenue for clear videography in the thermal infrared world. The dataset and code will be available 
650 4 |a Journal Article 
700 1 |a Dong, Xiangyu  |e verfasserin  |4 aut 
700 1 |a Zhou, Kailai  |e verfasserin  |4 aut 
700 1 |a Cao, Xun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 3839-3854  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:3839-3854 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3390404  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 3839-3854