Cross-Modal Hashing Method With Properties of Hamming Space : A New Perspective

Cross-modal hashing (CMH) has attracted considerable attention in recent years. Almost all existing CMH methods primarily focus on reducing the modality gap and semantic gap, i.e., aligning multi-modal features and their semantics in Hamming space, without taking into account the space gap, i.e., di...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 12 vom: 22. Nov., Seite 7636-7650
1. Verfasser: Hu, Zhikai (VerfasserIn)
Weitere Verfasser: Cheung, Yiu-Ming, Li, Mengke, Lan, Weichao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM371415489
003 DE-627
005 20241108232137.0
007 cr uuu---uuuuu
008 240424s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3392763  |2 doi 
028 5 2 |a pubmed24n1594.xml 
035 |a (DE-627)NLM371415489 
035 |a (NLM)38652619 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Zhikai  |e verfasserin  |4 aut 
245 1 0 |a Cross-Modal Hashing Method With Properties of Hamming Space  |b A New Perspective 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 08.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Cross-modal hashing (CMH) has attracted considerable attention in recent years. Almost all existing CMH methods primarily focus on reducing the modality gap and semantic gap, i.e., aligning multi-modal features and their semantics in Hamming space, without taking into account the space gap, i.e., difference between the real number space and the Hamming space. In fact, the space gap can affect the performance of CMH methods. In this paper, we analyze and demonstrate how the space gap affects the existing CMH methods, which therefore raises two problems: solution space compression and loss function oscillation. These two problems eventually cause the retrieval performance deteriorating. Based on these findings, we propose a novel algorithm, namely Semantic Channel Hashing (SCH). First, we classify sample pairs into fully semantic-similar, partially semantic-similar, and semantic-negative ones based on their similarity and impose different constraints on them, respectively, to ensure that the entire Hamming space is utilized. Then, we introduce a semantic channel to alleviate the issue of loss function oscillation. Experimental results on three public datasets demonstrate that SCH outperforms the state-of-the-art methods. Furthermore, experimental validations are provided to substantiate the conjectures regarding solution space compression and loss function oscillation, offering visual evidence of their impact on the CMH methods 
650 4 |a Journal Article 
700 1 |a Cheung, Yiu-Ming  |e verfasserin  |4 aut 
700 1 |a Li, Mengke  |e verfasserin  |4 aut 
700 1 |a Lan, Weichao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 12 vom: 22. Nov., Seite 7636-7650  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:12  |g day:22  |g month:11  |g pages:7636-7650 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3392763  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 12  |b 22  |c 11  |h 7636-7650