One Fits Many : Class Confusion Loss for Versatile Domain Adaptation

In the open world, various label sets and domain configurations give rise to a variety of Domain Adaptation (DA) setups, including closed-set, partial-set, open-set, and universal DA, as well as multi-source and multi-target DA. It is notable that existing DA methods are generally designed only for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 11 vom: 23. Nov., Seite 7251-7266
1. Verfasser: Jin, Ying (VerfasserIn)
Weitere Verfasser: Cao, Zhangjie, Wang, Ximei, Wang, Jianmin, Long, Mingsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM371415462
003 DE-627
005 20250306030849.0
007 cr uuu---uuuuu
008 240424s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3392565  |2 doi 
028 5 2 |a pubmed25n1237.xml 
035 |a (DE-627)NLM371415462 
035 |a (NLM)38652617 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jin, Ying  |e verfasserin  |4 aut 
245 1 0 |a One Fits Many  |b Class Confusion Loss for Versatile Domain Adaptation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the open world, various label sets and domain configurations give rise to a variety of Domain Adaptation (DA) setups, including closed-set, partial-set, open-set, and universal DA, as well as multi-source and multi-target DA. It is notable that existing DA methods are generally designed only for a specific setup, and may under-perform in setups they are not tailored to. This paper shifts the common paradigm of DA to Versatile Domain Adaptation (VDA), where one method can handle several different DA setups without any modification. Towards this goal, we first delve into a general inductive bias: class confusion, and then uncover that reducing such pairwise class confusion leads to significant transfer gains. With this insight, we propose one general class confusion loss (CC-Loss) to learn many setups. We estimate class confusion based only on classifier predictions and minimize the class confusion to enable accurate target predictions. Further, we improve the loss by enforcing the consistency of confusion matrices under different data augmentations to encourage its invariance to distribution perturbations. Experiments on 2D vision and 3D vision benchmarks show that the CC-Loss performs competitively in different mainstream DA setups 
650 4 |a Journal Article 
700 1 |a Cao, Zhangjie  |e verfasserin  |4 aut 
700 1 |a Wang, Ximei  |e verfasserin  |4 aut 
700 1 |a Wang, Jianmin  |e verfasserin  |4 aut 
700 1 |a Long, Mingsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 11 vom: 23. Nov., Seite 7251-7266  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:11  |g day:23  |g month:11  |g pages:7251-7266 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3392565  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 11  |b 23  |c 11  |h 7251-7266