Deep Learning Prediction of Triplet-Triplet Annihilation Parameters in Blue Fluorescent Organic Light-Emitting Diodes

© 2024 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 28 vom: 07. Juli, Seite e2312774
Auteur principal: Lim, Junseop (Auteur)
Autres auteurs: Kim, Jae-Min, Lee, Jun Yeob
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article deep learning exciton dynamics multilayer perceptron organic light‐emitting diodes triplet–triplet annihilation (TTA) ratio
LEADER 01000caa a22002652c 4500
001 NLM37141007X
003 DE-627
005 20250306030755.0
007 cr uuu---uuuuu
008 240424s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202312774  |2 doi 
028 5 2 |a pubmed25n1237.xml 
035 |a (DE-627)NLM37141007X 
035 |a (NLM)38652081 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lim, Junseop  |e verfasserin  |4 aut 
245 1 0 |a Deep Learning Prediction of Triplet-Triplet Annihilation Parameters in Blue Fluorescent Organic Light-Emitting Diodes 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a The triplet-triplet annihilation (TTA) ratio and the rate coefficient (kTT) of TTA are key factors in estimating the contribution of triplet excitons to radiative singlet excitons in fluorescent TTA organic light-emitting diodes. In this study, deep learning models are implemented to predict key factors from transient electroluminescence (trEL) data using new numerical equations. A new TTA model is developed that considers both polaron and exciton dynamics, enabling the distinction between prompt and delayed singlet decays with a fundamental understanding of the mechanism. In addition, deep learning models for predicting the kinetic coefficients and TTA ratio are established. After comprehensive optimization inspired by photophysics, determination coefficient values of 0.992 and 0.999 are achieved in the prediction of kTT and TTA ratio, respectively, indicating a nearly perfect prediction. The contribution of each kinetic parameter of polaron and exciton dynamics to the trEL curve is discussed using various deep-learning models 
650 4 |a Journal Article 
650 4 |a deep learning 
650 4 |a exciton dynamics 
650 4 |a multilayer perceptron 
650 4 |a organic light‐emitting diodes 
650 4 |a triplet–triplet annihilation (TTA) ratio 
700 1 |a Kim, Jae-Min  |e verfasserin  |4 aut 
700 1 |a Lee, Jun Yeob  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 28 vom: 07. Juli, Seite e2312774  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:28  |g day:07  |g month:07  |g pages:e2312774 
856 4 0 |u http://dx.doi.org/10.1002/adma.202312774  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 28  |b 07  |c 07  |h e2312774