Eliminating the Adverse Impact of Composition Modulation in Perovskite Light-Emitting Diodes toward Ultra-High Brightness and Stability

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 27 vom: 02. Juli, Seite e2313981
1. Verfasser: Li, Zhiqi (VerfasserIn)
Weitere Verfasser: Ren, Zhiwei, Liang, Qiong, Fong, Patrick W K, Tian, Jianjun, Li, Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article excess organic ammoniums ion migration perovskite light‐emitting diodes post‐treatment stability
Beschreibung
Zusammenfassung:© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Excess ammonium halides as composition additives are widely employed in perovskite light-emitting diodes (PeLEDs), aiming to achieve high performance by controlling crystallinity and passivating defects. However, an in-depth understanding of whether excess organoammonium components affect the film physical/electrical properties and the resultant device instability is still lacking. Here, the trade-off between the performance and stability in high-efficiency formamidinium lead iodide (FAPbI3)-based PeLEDs with excess ammonium halides is pointed, and the underlying mechanism is explored. Systematic experimental and theoretical studies reveal that excess halide salt-induced ion-doping largely alters the PeLEDs properties (e.g., carrier injection, field-dependent ion-drifting, defect physics, and phase stability). A surface clean assisted cross-linking strategy is demonstrated to eliminate the adverse impact of composition modulation and boost the operational stability without sacrificing the efficiency, achieving a high efficiency of 23.6%, a high radiance of 964 W sr-1 m-2 (The highest value for FAPbI3 based PeLEDs), and a prolong lifetime of 106.1 h at large direct current density (100 mA cm-2), concurrently. The findings uncovered an important link between excess halide salts and the device performance, providing a guideline for rational design of stable, bright, and high efficiency PeLEDs
Beschreibung:Date Revised 04.07.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202313981