Comparing multi-class classifier performance by multi-class ROC analysis : A nonparametric approach

The area under the Receiver Operating Characteristic (ROC) curve (AUC) is a standard metric for quantifying and comparing binary classifiers. Real world applications often require classification into multiple (more than two) classes. For multi-class classifiers that produce class membership scores,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing. - 1998. - 583(2024) vom: 28. Mai
1. Verfasser: Xu, Jingyan (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Neurocomputing
Schlagworte:Journal Article Ustatistics area under the ROC curve (AUC) jackknife multi-class AUC multi-class classification receiver operating characteristic (ROC)
LEADER 01000caa a22002652c 4500
001 NLM371346622
003 DE-627
005 20250306025759.0
007 cr uuu---uuuuu
008 240422s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.neucom.2024.127520  |2 doi 
028 5 2 |a pubmed25n1237.xml 
035 |a (DE-627)NLM371346622 
035 |a (NLM)38645687 
035 |a (PII)127520 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Jingyan  |e verfasserin  |4 aut 
245 1 0 |a Comparing multi-class classifier performance by multi-class ROC analysis  |b A nonparametric approach 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The area under the Receiver Operating Characteristic (ROC) curve (AUC) is a standard metric for quantifying and comparing binary classifiers. Real world applications often require classification into multiple (more than two) classes. For multi-class classifiers that produce class membership scores, a popular multi-class AUC (MAUC) variant is to average the pairwise AUC values [1]. Due to the complicated correlation patterns, the variance of MAUC is often estimated numerically using resampling techniques. This work is a generalization of DeLong's nonparameteric approach for binary AUC analysis [2] to MAUC. We first derive the closed-form expression of the covariance matrix of the pairwise AUCs within a single MAUC. Then by dropping higher order terms, we obtain an approximate covariance matrix with a compact, matrix factorization form, which then serves as the basis for variance estimation of a single MAUC. We further extend this approach to estimate the covariance of correlated MAUCs that arise from multiple competing classifiers. For the special case of binary correlated AUCs, our results coincide with that of DeLong. Our numerical studies confirm the accuracy of the variance and covariance estimates. We provide the source code of the proposed covariance estimation of correlated MAUCs on GitHub (https://tinyurl.com/euj6wvsz) for its easy adoption by machine learning and statistical analysis packages to quantify and compare multi-class classifiers 
650 4 |a Journal Article 
650 4 |a Ustatistics 
650 4 |a area under the ROC curve (AUC) 
650 4 |a jackknife 
650 4 |a multi-class AUC 
650 4 |a multi-class classification 
650 4 |a receiver operating characteristic (ROC) 
773 0 8 |i Enthalten in  |t Neurocomputing  |d 1998  |g 583(2024) vom: 28. Mai  |w (DE-627)NLM098202456  |x 1872-8286  |7 nnas 
773 1 8 |g volume:583  |g year:2024  |g day:28  |g month:05 
856 4 0 |u http://dx.doi.org/10.1016/j.neucom.2024.127520  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 583  |j 2024  |b 28  |c 05