Graph Convolutional Networks With Adaptive Neighborhood Awareness

Graph convolutional networks (GCNs) can quickly and accurately learn graph representations and have shown powerful performance in many graph learning domains. Despite their effectiveness, neighborhood awareness remains essential and challenging for GCNs. Existing methods usually perform neighborhood...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 11 vom: 18. Okt., Seite 7392-7404
1. Verfasser: Guang, Mingjian (VerfasserIn)
Weitere Verfasser: Yan, Chungang, Xu, Yuhua, Wang, Junli, Jiang, Changjun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM371290309
003 DE-627
005 20241004232040.0
007 cr uuu---uuuuu
008 240420s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3391356  |2 doi 
028 5 2 |a pubmed24n1557.xml 
035 |a (DE-627)NLM371290309 
035 |a (NLM)38640056 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guang, Mingjian  |e verfasserin  |4 aut 
245 1 0 |a Graph Convolutional Networks With Adaptive Neighborhood Awareness 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graph convolutional networks (GCNs) can quickly and accurately learn graph representations and have shown powerful performance in many graph learning domains. Despite their effectiveness, neighborhood awareness remains essential and challenging for GCNs. Existing methods usually perform neighborhood-aware steps only from the node or hop level, which leads to a lack of capability to learn the neighborhood information of nodes from both global and local perspectives. Moreover, most methods learn the nodes' neighborhood information from a single view, ignoring the importance of multiple views. To address the above issues, we propose a multi-view adaptive neighborhood-aware approach to learn graph representations efficiently. Specifically, we propose three random feature masking variants to perturb some neighbors' information to promote the robustness of graph convolution operators at node-level neighborhood awareness and exploit the attention mechanism to select important neighbors from the hop level adaptively. We also utilize the multi-channel technique and introduce a proposed multi-view loss to perceive neighborhood information from multiple perspectives. Extensive experiments show that our method can better obtain graph representation and has high accuracy 
650 4 |a Journal Article 
700 1 |a Yan, Chungang  |e verfasserin  |4 aut 
700 1 |a Xu, Yuhua  |e verfasserin  |4 aut 
700 1 |a Wang, Junli  |e verfasserin  |4 aut 
700 1 |a Jiang, Changjun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 11 vom: 18. Okt., Seite 7392-7404  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:11  |g day:18  |g month:10  |g pages:7392-7404 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3391356  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 11  |b 18  |c 10  |h 7392-7404