Neutrophil Extracellular Traps-Inhibiting and Fouling-Resistant Polysulfoxides Potently Prevent Postoperative Adhesion, Tumor Recurrence, and Metastasis

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 31 vom: 30. Aug., Seite e2400894
1. Verfasser: Wang, Jiafeng (VerfasserIn)
Weitere Verfasser: Wang, Yechun, Li, Junjun, Ying, Jiajia, Mu, Yongli, Zhang, Xuanhao, Zhou, Xuefei, Sun, Leimin, Jiang, Haiping, Zhuo, Wei, Shen, Youqing, Zhou, Tianhua, Liu, Xiangrui, Zhou, Quan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article neutrophil extracellular traps peritoneal metastasis polysulfoxides postoperative adhesion tumor recurrence Polymers Antineoplastic Agents
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Peritoneal metastasis (PM) is considered one of the most dreaded forms of cancer metastases for both patients and physicians. Aggressive cytoreductive surgery (CRS) is the primary treatment for peritoneal metastasis. Unfortunately, this intensive treatment frequently causes clinical complications, such as postoperative recurrence, metastasis, and adhesion formation. Emerging evidence suggests that neutrophil extracellular traps (NETs) released by inflammatory neutrophils contribute to these complications. Effective NET-targeting strategies thus show considerable potential in counteracting these complications but remain challenging. Here, one type of sulfoxide-containing homopolymer, PMeSEA, with potent fouling-resistant and NET-inhibiting capabilities, is synthesized and screened. Hydrating sulfoxide groups endow PMeSEA with superior nonfouling ability, significantly inhibiting protein/cell adhesion. Besides, the polysulfoxides can be selectively oxidized by ClO- which is required to stabilize the NETs rather than H2O2, and ClO- scavenging effectively inhibits NETs formation without disturbing redox homeostasis in tumor cells and quiescent neutrophils. As a result, PMeSEA potently prevents postoperative adhesions, significantly suppresses peritoneal metastasis, and shows synergetic antitumor activity with chemotherapeutic 5-Fluorouracil. Moreover, coupling CRS with PMeSEA potently inhibits CRS-induced tumor metastatic relapse and postoperative adhesions. Notably, PMeSEA exhibits low in vivo acute and subacute toxicities, implying significant potential for clinical postoperative adjuvant treatment
Beschreibung:Date Completed 01.08.2024
Date Revised 01.08.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202400894