Calorimetric Heats of Intrusion of LiCl Aqueous Solutions in Hydrophobic MFI-Type Zeosil : Influence of the Concentration

For the first time, we report calorimetric measurements of intrusion of aqueous LiCl solutions in a hydrophobic pure siliceous MFI zeolite (silicalite-1) under high pressure. Our results show that the intrusion heats are strongly dependent on the LiCl concentration. The intrusion process is endother...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 17 vom: 30. Apr., Seite 8827-8835
1. Verfasser: Ryzhikov, Andrey (VerfasserIn)
Weitere Verfasser: Dirand, Céline, Astafan, Amir, Nouali, Habiba, Daou, T Jean, Bezverkhyy, Igor, Chaplais, Gérald, Bellat, Jean-Pierre
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:For the first time, we report calorimetric measurements of intrusion of aqueous LiCl solutions in a hydrophobic pure siliceous MFI zeolite (silicalite-1) under high pressure. Our results show that the intrusion heats are strongly dependent on the LiCl concentration. The intrusion process is endothermic for diluted solutions (molar H2O/LiCl = 12) as well as for water, but it becomes exothermic for a concentration close to saturation (molar H2O/LiCl = 4). Analysis of the data in the framework of wetting thermodynamics shows that besides surface wetting, other phenomena occur during intrusion, such as hydrogen-bond weakening and composition change. In all cases, water is preferentially intruded so that the intruded phase becomes more diluted than the bulk solution. In the case of the most diluted solution, only water molecules seemed to be intruded. Furthermore, silicalite-1 is shown to be very stable in the presence of LiCl solution, with no noticeable structural and textural modifications observed after intrusion
Beschreibung:Date Revised 30.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c03931