Visual Analytics for Efficient Image Exploration and User-Guided Image Captioning

Recent advancements in pre-trained language-image models have ushered in a new era of visual comprehension. Leveraging the power of these models, this article tackles two issues within the realm of visual analytics: (1) the efficient exploration of large-scale image datasets and identification of da...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 6 vom: 16. Juni, Seite 2875-2887
1. Verfasser: Li, Yiran (VerfasserIn)
Weitere Verfasser: Wang, Junpeng, Aboagye, Prince, Yeh, Chin-Chia Michael, Zheng, Yan, Wang, Liang, Zhang, Wei, Ma, Kwan-Liu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM371148871
003 DE-627
005 20240920232156.0
007 cr uuu---uuuuu
008 240417s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3388514  |2 doi 
028 5 2 |a pubmed24n1540.xml 
035 |a (DE-627)NLM371148871 
035 |a (NLM)38625780 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yiran  |e verfasserin  |4 aut 
245 1 0 |a Visual Analytics for Efficient Image Exploration and User-Guided Image Captioning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent advancements in pre-trained language-image models have ushered in a new era of visual comprehension. Leveraging the power of these models, this article tackles two issues within the realm of visual analytics: (1) the efficient exploration of large-scale image datasets and identification of data biases within them; (2) the evaluation of image captions and steering of their generation process. On the one hand, by visually examining the captions generated from language-image models for an image dataset, we gain deeper insights into the visual contents, unearthing data biases that may be entrenched within the dataset. On the other hand, by depicting the association between visual features and textual captions, we expose the weaknesses of pre-trained language-image models in their captioning capability and propose an interactive interface to steer caption generation. The two parts have been coalesced into a coordinated visual analytics system, fostering the mutual enrichment of visual and textual contents. We validate the effectiveness of the system with domain practitioners through concrete case studies with large-scale image datasets 
650 4 |a Journal Article 
700 1 |a Wang, Junpeng  |e verfasserin  |4 aut 
700 1 |a Aboagye, Prince  |e verfasserin  |4 aut 
700 1 |a Yeh, Chin-Chia Michael  |e verfasserin  |4 aut 
700 1 |a Zheng, Yan  |e verfasserin  |4 aut 
700 1 |a Wang, Liang  |e verfasserin  |4 aut 
700 1 |a Zhang, Wei  |e verfasserin  |4 aut 
700 1 |a Ma, Kwan-Liu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 6 vom: 16. Juni, Seite 2875-2887  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:6  |g day:16  |g month:06  |g pages:2875-2887 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3388514  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 6  |b 16  |c 06  |h 2875-2887