Bridging Visual and Textual Semantics : Towards Consistency for Unbiased Scene Graph Generation

Scene Graph Generation (SGG) aims to detect visual relationships in an image. However, due to long-tailed bias, SGG is far from practical. Most methods depend heavily on the assistance of statistics co-occurrence to generate a balanced dataset, so they are dataset-specific and easily affected by noi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 11 vom: 15. Okt., Seite 7102-7119
1. Verfasser: Zhang, Ruonan (VerfasserIn)
Weitere Verfasser: An, Gaoyun, Hao, Yiqing, Wu, Dapeng Oliver
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM371148804
003 DE-627
005 20241004232038.0
007 cr uuu---uuuuu
008 240417s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3389030  |2 doi 
028 5 2 |a pubmed24n1557.xml 
035 |a (DE-627)NLM371148804 
035 |a (NLM)38625774 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Ruonan  |e verfasserin  |4 aut 
245 1 0 |a Bridging Visual and Textual Semantics  |b Towards Consistency for Unbiased Scene Graph Generation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Scene Graph Generation (SGG) aims to detect visual relationships in an image. However, due to long-tailed bias, SGG is far from practical. Most methods depend heavily on the assistance of statistics co-occurrence to generate a balanced dataset, so they are dataset-specific and easily affected by noises. The fundamental cause is that SGG is simplified as a classification task instead of a reasoning task, thus the ability capturing the fine-grained details is limited and the difficulty in handling ambiguity is increased. By imitating the way of dual process in cognitive psychology, a Visual-Textual Semantics Consistency Network (VTSCN) is proposed to model the SGG task as a reasoning process, and relieve the long-tailed bias significantly. In VTSCN, as the rapid autonomous process (Type1 process), we design a Hybrid Union Representation (HUR) module, which is divided into two steps for spatial awareness and working memories modeling. In addition, as the higher order reasoning process (Type2 process), a Global Textual Semantics Modeling (GTS) module is designed to individually model the textual contexts with the word embeddings of pairwise objects. As the final associative process of cognition, a Heterogeneous Semantics Consistency (HSC) module is designed to balance the type1 process and the type2 process. Lastly, our VTSCN raises a new way for SGG model design by fully considering human cognitive process. Experiments on Visual Genome, GQA and PSG datasets show our method is superior to state-of-the-art methods, and ablation studies validate the effectiveness of our VTSCN 
650 4 |a Journal Article 
700 1 |a An, Gaoyun  |e verfasserin  |4 aut 
700 1 |a Hao, Yiqing  |e verfasserin  |4 aut 
700 1 |a Wu, Dapeng Oliver  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 11 vom: 15. Okt., Seite 7102-7119  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:11  |g day:15  |g month:10  |g pages:7102-7119 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3389030  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 11  |b 15  |c 10  |h 7102-7119