Multi-Relational Deep Hashing for Cross-Modal Search

Deep cross-modal hashing retrieval has recently made significant progress. However, existing methods generally learn hash functions with pairwise or triplet supervisions, which involves learning the relevant information by splicing partial similarity between data pairs; notably, this approach only c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 16., Seite 3009-3020
1. Verfasser: Liang, Xiao (VerfasserIn)
Weitere Verfasser: Yang, Erkun, Yang, Yanhua, Deng, Cheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM371148669
003 DE-627
005 20240503232547.0
007 cr uuu---uuuuu
008 240417s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3385656  |2 doi 
028 5 2 |a pubmed24n1396.xml 
035 |a (DE-627)NLM371148669 
035 |a (NLM)38625760 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Xiao  |e verfasserin  |4 aut 
245 1 0 |a Multi-Relational Deep Hashing for Cross-Modal Search 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep cross-modal hashing retrieval has recently made significant progress. However, existing methods generally learn hash functions with pairwise or triplet supervisions, which involves learning the relevant information by splicing partial similarity between data pairs; notably, this approach only captures the data similarity locally and incompletely, resulting in sub-optimal retrieval performance. In this paper, we propose a novel Multi-Relational Deep Hashing (MRDH) approach, which can fully bridge the modality gap by comprehensively modeling the similarity relationship between data in different modalities. In more detail, to investigate the inter-modal relationships, we constrain the consistency of cross-modal pairwise similarities to maintain the semantic similarity across modalities. Moreover, to further capture complete similarity information, we design a new similarity metric, which we term cross-modal global similarity, by encouraging hash codes of similar data pairs from different modalities to approach a common center and hash codes for dissimilar pairs to converge to different centers. Adopting this approach enables our model to generate more discriminative hash codes. Extensive experiments on three benchmark datasets demonstrate the superiority of our method on cross-modal hashing retrieval 
650 4 |a Journal Article 
700 1 |a Yang, Erkun  |e verfasserin  |4 aut 
700 1 |a Yang, Yanhua  |e verfasserin  |4 aut 
700 1 |a Deng, Cheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 16., Seite 3009-3020  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:16  |g pages:3009-3020 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3385656  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 16  |h 3009-3020