Effects of increasing soil moisture on Antarctic desert microbial ecosystems

© 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Bibliographische Detailangaben
Veröffentlicht in:Conservation biology : the journal of the Society for Conservation Biology. - 1989. - 38(2024), 4 vom: 03. Aug., Seite e14268
1. Verfasser: Zhang, Eden (VerfasserIn)
Weitere Verfasser: Wong, Sin Yin, Czechowski, Paul, Terauds, Aleks, Ray, Angelique E, Benaud, Nicole, Chelliah, Devan S, Wilkins, Daniel, Montgomery, Kate, Ferrari, Belinda C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Conservation biology : the journal of the Society for Conservation Biology
Schlagworte:Journal Article Antarctica Antártida cambio climático climate change conservación conservation dispersal dispersión microbioma del suelo mehr... rotación espacial soil microbiome spatial turnover Soil
LEADER 01000caa a22002652c 4500
001 NLM371120764
003 DE-627
005 20250306022212.0
007 cr uuu---uuuuu
008 240416s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/cobi.14268  |2 doi 
028 5 2 |a pubmed25n1236.xml 
035 |a (DE-627)NLM371120764 
035 |a (NLM)38622950 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Eden  |e verfasserin  |4 aut 
245 1 0 |a Effects of increasing soil moisture on Antarctic desert microbial ecosystems 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.07.2024 
500 |a Date Revised 23.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2024 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology. 
520 |a Overgeneralization and a lack of baseline data for microorganisms in high-latitude environments have restricted the understanding of the microbial response to climate change, which is needed to establish Antarctic conservation frameworks. To bridge this gap, we examined over 17,000 sequence variants of bacteria and microeukarya across the hyperarid Vestfold Hills and Windmill Islands regions of eastern Antarctica. Using an extended gradient forest model, we quantified multispecies response to variations along 79 edaphic gradients to explore the effects of change and wind-driven dispersal on community dynamics under projected warming trends. We also analyzed a second set of soil community data from the Windmill Islands to test our predictions of major environmental tipping points. Soil moisture was the most robust predictor for shaping the regional soil microbiome; the highest rates of compositional turnover occurred at 10-12% soil moisture threshold for photoautotrophs, such as Cyanobacteria, Chlorophyta, and Ochrophyta. Dust profiles revealed a high dispersal propensity for Chlamydomonas, a microalga, and higher biomass was detected at trafficked research stations. This could signal the potential for algal blooms and increased nonendemic species dispersal as human activities increase in the region. Predicted increases in moisture availability on the Windmill Islands were accompanied by high photoautotroph abundances. Abundances of rare oligotrophic taxa, such as Eremiobacterota and Candidatus Dormibacterota, which play a crucial role in atmospheric chemosynthesis, declined over time. That photosynthetic taxa increased as soil moisture increased under a warming scenario suggests the potential for competition between primary production strategies and thus a more biotically driven ecosystem should the climate become milder. Better understanding of environmental triggers will aid conservation efforts, and it is crucial that long-term monitoring of our study sites be established for the protection of Antarctic desert ecosystems. Furthermore, the successful implementation of an improved gradient forest model presents an exciting opportunity to broaden its use on microbial systems globally 
650 4 |a Journal Article 
650 4 |a Antarctica 
650 4 |a Antártida 
650 4 |a cambio climático 
650 4 |a climate change 
650 4 |a conservación 
650 4 |a conservation 
650 4 |a dispersal 
650 4 |a dispersión 
650 4 |a microbioma del suelo 
650 4 |a rotación espacial 
650 4 |a soil microbiome 
650 4 |a spatial turnover 
650 7 |a Soil  |2 NLM 
700 1 |a Wong, Sin Yin  |e verfasserin  |4 aut 
700 1 |a Czechowski, Paul  |e verfasserin  |4 aut 
700 1 |a Terauds, Aleks  |e verfasserin  |4 aut 
700 1 |a Ray, Angelique E  |e verfasserin  |4 aut 
700 1 |a Benaud, Nicole  |e verfasserin  |4 aut 
700 1 |a Chelliah, Devan S  |e verfasserin  |4 aut 
700 1 |a Wilkins, Daniel  |e verfasserin  |4 aut 
700 1 |a Montgomery, Kate  |e verfasserin  |4 aut 
700 1 |a Ferrari, Belinda C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Conservation biology : the journal of the Society for Conservation Biology  |d 1989  |g 38(2024), 4 vom: 03. Aug., Seite e14268  |w (DE-627)NLM098176803  |x 1523-1739  |7 nnas 
773 1 8 |g volume:38  |g year:2024  |g number:4  |g day:03  |g month:08  |g pages:e14268 
856 4 0 |u http://dx.doi.org/10.1111/cobi.14268  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2024  |e 4  |b 03  |c 08  |h e14268