Dynamic (Sub)surface-Oxygen Enables Highly Efficient Carbonyl-Coupling for Electrochemical Carbon Dioxide Reduction

© 2024 Wiley‐VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 26 vom: 01. Juni, Seite e2400640
Auteur principal: Chu, You-Chiuan (Auteur)
Autres auteurs: Chen, Kuan-Hsu, Tung, Ching-Wei, Chen, Hsiao-Chien, Wang, Jiali, Kuo, Tsung-Rong, Hsu, Chia-Shuo, Lin, Kuo-Hsin, Tsai, Li Duan, Chen, Hao Ming
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article carbonyl coupling efficiency high‐valent Cu species multi‐carbon production subsurface oxygen
Description
Résumé:© 2024 Wiley‐VCH GmbH.
Nowadays, high-valent Cu species (i.e., Cuδ +) are clarified to enhance multi-carbon production in electrochemical CO2 reduction reaction (CO2RR). Nonetheless, the inconsistent average Cu valence states are reported to significantly govern the product profile of CO2RR, which may lead to misunderstanding of the enhanced mechanism for multi-carbon production and results in ambiguous roles of high-valent Cu species. Dynamic Cuδ + during CO2RR leads to erratic valence states and challenges of high-valent species determination. Herein, an alternative descriptor of (sub)surface oxygen, the (sub)surface-oxygenated degree (κ), is proposed to quantify the active high-valent Cu species on the (sub)surface, which regulates the multi-carbon production of CO2RR. The κ validates a strong correlation to the carbonyl (*CO) coupling efficiency and is the critical factor for the multi-carbon enhancement, in which an optimized Cu2OPd2.31 achieves the multi-carbon partial current density of ≈330 mA cm-2 with a faradaic efficiency of 83.5%. This work shows a promising way to unveil the role of high-valent species and further achieve carbon neutralization
Description:Date Revised 26.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202400640