Nitrogen-Doped Biochar for Enhanced Peroxymonosulfate Activation to Degrade Phenol through Both Free Radical and Direct Oxidation Based on Electron Transfer Pathways

Nowadays, super nitrogen-doped biochar (SNBC) material has become one of the most promising metal-free catalysts for activating peroxymonosulfate (PMS) to degrade organic pollutants. To understand the evolution of SNBC properties with fabrication conditions, a variety of SNBC materials were prepared...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 40(2024), 16 vom: 23. Apr., Seite 8520-8532
1. Verfasser: Xie, Zengrun (VerfasserIn)
Weitere Verfasser: Zhang, Yuanyuan, Li, Zhiling, Zhang, Shengxiao, Du, Chenyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Nowadays, super nitrogen-doped biochar (SNBC) material has become one of the most promising metal-free catalysts for activating peroxymonosulfate (PMS) to degrade organic pollutants. To understand the evolution of SNBC properties with fabrication conditions, a variety of SNBC materials were prepared and characterized by elemental analysis, N2 adsorption-desorption, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. We systematically investigated the activation potential of these SNBC materials for PMS to degrade phenol. SN1BC-800 with the best catalytic performance was obtained by changing the activation temperatures and the ratio of biochar to melamine. The effects of catalyst dosage, the PMS concentration, pH, and reaction temperature on phenol degradation were studied in detail. In the presence of 0.3 g/L SN1BC-800 and 1 g/L PMS, the removal rate of 20 mg/L phenol could reach 100% within 5 min. According to electron paramagnetic resonance spectra and free radical quenching experiments, a nonfree radical pathway of phenol degradation dominated by 1O2 and electron transfer was proposed. More interestingly, the excellent catalytic performance of the SN1BC-800/PMS system is universally applicable in the degradation of other typical organic pollutants. In addition, the degradation rate of phenol is still over 80% after five reuses, which shows that the SN1BC-800 catalyst has high stability and good application prospects in environmental remediation
Beschreibung:Date Revised 23.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c00072