Sensitivity-Aware Density Estimation in Multiple Dimensions

We formulate an optimization problem to estimate probability densities in the context of multidimensional problems that are sampled with uneven probability. It considers detector sensitivity as an heterogeneous density and takes advantage of the computational speed and flexible boundary conditions o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 11 vom: 01. Okt., Seite 7120-7135
1. Verfasser: Boquet-Pujadas, Aleix (VerfasserIn)
Weitere Verfasser: Pla, Pol Del Aguila, Unser, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370970225
003 DE-627
005 20241007232003.0
007 cr uuu---uuuuu
008 240413s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3388370  |2 doi 
028 5 2 |a pubmed24n1560.xml 
035 |a (DE-627)NLM370970225 
035 |a (NLM)38607714 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Boquet-Pujadas, Aleix  |e verfasserin  |4 aut 
245 1 0 |a Sensitivity-Aware Density Estimation in Multiple Dimensions 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We formulate an optimization problem to estimate probability densities in the context of multidimensional problems that are sampled with uneven probability. It considers detector sensitivity as an heterogeneous density and takes advantage of the computational speed and flexible boundary conditions offered by splines on a grid. We choose to regularize the Hessian of the spline via the nuclear norm to promote sparsity. As a result, the method is spatially adaptive and stable against the choice of the regularization parameter, which plays the role of the bandwidth. We test our computational pipeline on standard densities and provide software. We also present a new approach to PET rebinning as an application of our framework 
650 4 |a Journal Article 
700 1 |a Pla, Pol Del Aguila  |e verfasserin  |4 aut 
700 1 |a Unser, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 11 vom: 01. Okt., Seite 7120-7135  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:11  |g day:01  |g month:10  |g pages:7120-7135 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3388370  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 11  |b 01  |c 10  |h 7120-7135