ISTR : Mask-Embedding-Based Instance Segmentation Transformer

Transformer-based instance-level recognition has attracted increasing research attention recently due to the superior performance. However, although attempts have been made to encode masks as embeddings into Transformer-based frameworks, how to combine mask embeddings and spatial information for a t...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 14., Seite 2895-2907
Auteur principal: Hu, Jie (Auteur)
Autres auteurs: Lu, Yao, Zhang, Shengchuan, Cao, Liujuan
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM370970101
003 DE-627
005 20250306015904.0
007 cr uuu---uuuuu
008 240413s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3385980  |2 doi 
028 5 2 |a pubmed25n1235.xml 
035 |a (DE-627)NLM370970101 
035 |a (NLM)38607701 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Jie  |e verfasserin  |4 aut 
245 1 0 |a ISTR  |b Mask-Embedding-Based Instance Segmentation Transformer 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 17.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Transformer-based instance-level recognition has attracted increasing research attention recently due to the superior performance. However, although attempts have been made to encode masks as embeddings into Transformer-based frameworks, how to combine mask embeddings and spatial information for a transformer-based approach is still not fully explored. In this paper, we revisit the design of mask-embedding-based pipelines and propose an Instance Segmentation TRansformer (ISTR) with Mask Meta-Embeddings (MME), leveraging the strengths of transformer models in encoding embedding information and incorporating spatial information from mask embeddings. ISTR incorporates a recurrent refining head that consists of a Dynamic Box Predictor (DBP), a Mask Information Generator (MIG), and a Mask Meta-Decoder (MMD). To improve the quality of mask embeddings, MME interprets the mask encoding-decoding processes as a mutual information maximization problem, which unifies the objective functions of different decoding schemes such as Principal Component Analysis (PCA) and Discrete Cosine Transform (DCT) with a meta-formulation. Under the meta-formulation, a learnable Spatial Mask Tuner (SMT) is further proposed, which fuses the spatial and embedding information produced from MIG and can significantly boost the segmentation performance. The resulting varieties, i.e., ISTR-PCA, ISTR-DCT, and ISTR-SMT, demonstrate the effectiveness and efficiency of incorporating mask embeddings with the query-based instance segmentation pipelines. On the COCO dataset, ISTR surpasses all predominant mask-embedding-based models by a large margin, and achieves competitive performance compared to concurrent state-of-the-art models. On the Cityscapes dataset, ISTR also outperforms several strong baselines. Our code has been made available at: https://github.com/hujiecpp/ISTR 
650 4 |a Journal Article 
700 1 |a Lu, Yao  |e verfasserin  |4 aut 
700 1 |a Zhang, Shengchuan  |e verfasserin  |4 aut 
700 1 |a Cao, Liujuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 14., Seite 2895-2907  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:14  |g pages:2895-2907 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3385980  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 14  |h 2895-2907