Hybrid-Electrolytes System Established by Dual Super-lyophobic Membrane Enabling High-Voltage Aqueous Lithium Metal Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 26 vom: 27. Juni, Seite e2401486
1. Verfasser: Wang, Qifei (VerfasserIn)
Weitere Verfasser: Wang, Changhao, Qiao, Yu, Zhou, Haoshen, Yu, Jihong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article aqueous electrolyte dual super‐lyophobic membrane high‐voltage cathodes hybrid‐electrolytes strategy lithium metal batteries
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Aqueous electrolytes and related aqueous rechargeable batteries own unique advantage on safety and environmental friendliness, but coupling high energy density Li-metal batteries with aqueous electrolyte still represent challenging and not yet reported. Here, this work makes a breakthrough in "high-voltage aqueous Li-metal batteries" (HVALMBs) by adopting a brilliant hybrid-electrolytes strategy. Concentrated ternary-salts ether-based electrolyte (CTE) acts as the anolyte to ensure the stability and reversibility of Li-metal plating/stripping. Eco-friendly water-in-salt (WiS) electrolyte acts as catholyte to support the healthy operation of high-voltage cathodes. Most importantly, the aqueous catholyte and non-aqueous anolyte are isolated in each independent chamber without any crosstalk. Aqueous catholyte permeation toward Li anode can be completely prohibited without proton-induced corrosion, which is enabled by the introduction of under-liquid dual super-lyophobic membrane-based separator, which can realize the segregation of the most effective immiscible electrolytes with a surface tension difference as small as 6 mJ m-2. As a result, the aqueous electrolyte can be successfully coupled with Li-metal anode and achieve the fabrication of HVALMBs (hybrid-electrolytes system), which presents long-term cycle stability with a capacity retention of 81.0% after 300 cycles (LiNi0.8Mn0.1Co0.1O2 || Li (limited) cell) and high energy density (682 Wh kg-1)
Beschreibung:Date Revised 26.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202401486