An overview of literature on COVID-19, MERS and SARS : Using text mining and latent Dirichlet allocation

© The Author(s) 2020.

Bibliographische Detailangaben
Veröffentlicht in:Journal of information science. - 1998. - 48(2022), 3 vom: 22. Juni, Seite 304-320
1. Verfasser: Cheng, Xian (VerfasserIn)
Weitere Verfasser: Cao, Qiang, Liao, Stephen Shaoyi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of information science
Schlagworte:Journal Article COVID-19 MERS SARS latent Dirichlet allocation literature analysis text mining
LEADER 01000caa a22002652 4500
001 NLM370923545
003 DE-627
005 20240828232154.0
007 cr uuu---uuuuu
008 240412s2022 xx |||||o 00| ||eng c
024 7 |a 10.1177/0165551520954674  |2 doi 
028 5 2 |a pubmed24n1515.xml 
035 |a (DE-627)NLM370923545 
035 |a (NLM)38603038 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cheng, Xian  |e verfasserin  |4 aut 
245 1 3 |a An overview of literature on COVID-19, MERS and SARS  |b Using text mining and latent Dirichlet allocation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.08.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s) 2020. 
520 |a The unprecedented outbreak of COVID-19 is one of the most serious global threats to public health in this century. During this crisis, specialists in information science could play key roles to support the efforts of scientists in the health and medical community for combatting COVID-19. In this article, we demonstrate that information specialists can support health and medical community by applying text mining technique with latent Dirichlet allocation procedure to perform an overview of a mass of coronavirus literature. This overview presents the generic research themes of the coronavirus diseases: COVID-19, MERS and SARS, reveals the representative literature per main research theme and displays a network visualisation to explore the overlapping, similarity and difference among these themes. The overview can help the health and medical communities to extract useful information and interrelationships from coronavirus-related studies 
650 4 |a Journal Article 
650 4 |a COVID-19 
650 4 |a MERS 
650 4 |a SARS 
650 4 |a latent Dirichlet allocation 
650 4 |a literature analysis 
650 4 |a text mining 
700 1 |a Cao, Qiang  |e verfasserin  |4 aut 
700 1 |a Liao, Stephen Shaoyi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of information science  |d 1998  |g 48(2022), 3 vom: 22. Juni, Seite 304-320  |w (DE-627)NLM098139452  |x 0165-5515  |7 nnns 
773 1 8 |g volume:48  |g year:2022  |g number:3  |g day:22  |g month:06  |g pages:304-320 
856 4 0 |u http://dx.doi.org/10.1177/0165551520954674  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2022  |e 3  |b 22  |c 06  |h 304-320