On the Consistency and Large-Scale Extension of Multiple Kernel Clustering

Existing multiple kernel clustering (MKC) algorithms have two ubiquitous problems. From the theoretical perspective, most MKC algorithms lack sufficient theoretical analysis, especially the consistency of learned parameters, such as the kernel weights. From the practical perspective, the high comple...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 10 vom: 01. Sept., Seite 6935-6947
1. Verfasser: Liang, Weixuan (VerfasserIn)
Weitere Verfasser: Tang, Chang, Liu, Xinwang, Liu, Yong, Liu, Jiyuan, Zhu, En, He, Kunlun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370921798
003 DE-627
005 20240907232452.0
007 cr uuu---uuuuu
008 240412s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3387433  |2 doi 
028 5 2 |a pubmed24n1526.xml 
035 |a (DE-627)NLM370921798 
035 |a (NLM)38602855 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Weixuan  |e verfasserin  |4 aut 
245 1 0 |a On the Consistency and Large-Scale Extension of Multiple Kernel Clustering 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing multiple kernel clustering (MKC) algorithms have two ubiquitous problems. From the theoretical perspective, most MKC algorithms lack sufficient theoretical analysis, especially the consistency of learned parameters, such as the kernel weights. From the practical perspective, the high complexity makes MKC unable to handle large-scale datasets. This paper tries to address the above two issues. We first make a consistency analysis of an influential MKC method named Simple Multiple Kernel k-Means (SimpleMKKM). Specifically, suppose that ∧γn are the kernel weights learned by SimpleMKKM from the training samples. We also define the expected version of SimpleMKKM and denote its solution as γ*. We establish an upper bound of ||∧γn-γ*||∞ in the order of ~O(1/√n), where n is the sample number. Based on this result, we also derive its excess clustering risk calculated by a standard clustering loss function. For the large-scale extension, we replace the eigen decomposition of SimpleMKKM with singular value decomposition (SVD). Consequently, the complexity can be decreased to O(n) such that SimpleMKKM can be implemented on large-scale datasets. We then deduce several theoretical results to verify the approximation ability of the proposed SVD-based method. The results of comprehensive experiments demonstrate the superiority of the proposed method 
650 4 |a Journal Article 
700 1 |a Tang, Chang  |e verfasserin  |4 aut 
700 1 |a Liu, Xinwang  |e verfasserin  |4 aut 
700 1 |a Liu, Yong  |e verfasserin  |4 aut 
700 1 |a Liu, Jiyuan  |e verfasserin  |4 aut 
700 1 |a Zhu, En  |e verfasserin  |4 aut 
700 1 |a He, Kunlun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 10 vom: 01. Sept., Seite 6935-6947  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:10  |g day:01  |g month:09  |g pages:6935-6947 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3387433  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 10  |b 01  |c 09  |h 6935-6947