Constructing Bipolar Dual-Active Sites through High-Entropy-Induced Electric Dipole Transition for Decoupling Oxygen Redox

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 26 vom: 10. Juni, Seite e2401018
1. Verfasser: Zhang, Qi (VerfasserIn)
Weitere Verfasser: Zheng, Zhiyang, Gao, Runhua, Xiao, Xiao, Jiao, Miaolun, Wang, Boran, Zhou, Guangmin, Cheng, Hui-Ming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bifunctional electrocatalyst decoupling high‐entropy lattice distortion
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
It remains a significant challenge to construct active sites to break the trade-off between oxidation and reduction processes occurring in battery cathodes with conversion mechanism, especially for the oxygen reduction and evolution reactions (ORR/OER) involved in the zinc-air batteries (ZABs). Here, using a high-entropy-driven electric dipole transition strategy to activate and stabilize the tetrahedral sites is proposed, while enhancing the activity of octahedral sites through orbital hybridization in a FeCoNiMnCrO spinel oxide, thus constructing bipolar dual-active sites with high-low valence states, which can effectively decouple ORR/OER. The FeCoNiMnCrO high-entropy spinel oxide with severe lattice distortion, exhibits a strong 1s→4s electric dipole transition and intense t2g(Co)/eg(Ni)-2p(OL) orbital hybridization that regulates the electronic descriptors, eg and t2g, which leads to the formation of low-valence Co tetrahedral sites (Coth) and high-valence Ni octahedral sites (Nioh), resulting in a higher half-wave potential of 0.87 V on Coth sites and a lower overpotential of 0.26 V at 10 mA cm-2 on Nioh sites as well as a superior performance of ZABs compared to low/mild entropy spinel oxides. Therefore, entropy engineering presents a distinctive approach for designing catalytic sites by inducing novel electromagnetic properties in materials across various electrocatalytic reactions, particularly for decoupling systems
Beschreibung:Date Revised 26.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202401018