|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM370886682 |
003 |
DE-627 |
005 |
20240704232037.0 |
007 |
cr uuu---uuuuu |
008 |
240411s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202401236
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1460.xml
|
035 |
|
|
|a (DE-627)NLM370886682
|
035 |
|
|
|a (NLM)38599344
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Jieqiong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Thermal Radiation Annealing for Overcoming Processing Temperature Limitation of Flexible Perovskite Solar Cells
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 04.07.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Common polymeric conductive electrodes, such as polyethylene terephthalate (PET) coated with indium tin oxide, face a major challenge due to their low processing-temperature limits, attributed to PET's low glass transition temperature (Tg) of (70-80 °C). This limitation significantly narrows the scope of material selection, limits the processing techniques applicable to the low Tg, and hinders the ripened technology transfer from glass substrates to them. Addressing the temperature constraints of the flexible substrates is impactful yet underexplored, with broader implications for fields beyond photovoltaics. Here, a new thermal radiation annealing methodology is introduced to address this issue. By applying the above Tg radiation annealing in conjunction with thermoelectric cooling, highly ordered molecular packing on PET substrates is successfully created, which is exclusively unachievable due to PET's low thermal tolerance. As a result, in the context of perovskite solar cells, this approach enables the circumvention of high-temperature annealing limitations of PET substrates, leading to a remarkable flexible device efficiency of 22.61% and a record fill factor of 83.42%. This approach proves especially advantageous for advancing the field of flexible optoelectronic devices
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a efficiency
|
650 |
|
4 |
|a flexible
|
650 |
|
4 |
|a solar cell
|
650 |
|
4 |
|a thermal radiation annealing
|
650 |
|
4 |
|a thermal tolerance
|
700 |
1 |
|
|a Zhao, Zinan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qian, Jin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Zihui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Congcong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Shengzhong Frank
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Dong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 27 vom: 02. Juli, Seite e2401236
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:27
|g day:02
|g month:07
|g pages:e2401236
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202401236
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 27
|b 02
|c 07
|h e2401236
|