Deep Learning Model for Quality Assessment of Urinary Bladder Ultrasound Images using Multi-scale and Higher-order Processing

Autonomous Ultrasound Image Quality Assessment (US-IQA) is a promising tool to aid the interpretation by practicing sonographers and to enable the future robotization of ultrasound procedures. However, autonomous US-IQA has several challenges. Ultrasound images contain many spurious artifacts, such...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - PP(2024) vom: 10. Apr.
1. Verfasser: Raina, Deepak (VerfasserIn)
Weitere Verfasser: Chandrashekhara, S H, Voyles, Richard, Wachs, Juan, Saha, Subir Kumar
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370877284
003 DE-627
005 20240415233734.0
007 cr uuu---uuuuu
008 240411s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2024.3386919  |2 doi 
028 5 2 |a pubmed24n1376.xml 
035 |a (DE-627)NLM370877284 
035 |a (NLM)38598406 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Raina, Deepak  |e verfasserin  |4 aut 
245 1 0 |a Deep Learning Model for Quality Assessment of Urinary Bladder Ultrasound Images using Multi-scale and Higher-order Processing 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Autonomous Ultrasound Image Quality Assessment (US-IQA) is a promising tool to aid the interpretation by practicing sonographers and to enable the future robotization of ultrasound procedures. However, autonomous US-IQA has several challenges. Ultrasound images contain many spurious artifacts, such as noise due to handheld probe positioning, errors in the selection of probe parameters and patient respiration during the procedure. Further, these images are highly variable in appearance with respect to the individual patient's physiology. We propose to use a deep Convolutional Neural Network (CNN), USQNet, which utilizes a Multi-scale and Local-to-Global Second-order Pooling (MS-L2GSoP) classifier to conduct the sonographer-like assessment of image quality. This classifier first extracts features at multiple scales to encode the inter-patient anatomical variations, similar to a sonographer's understanding of anatomy. Then, it uses second-order pooling in the intermediate layers (local) and at the end of the network (global) to exploit the second-order statistical dependency of multi-scale structural and multi-region textural features. The L2GSoP will capture the higher-order relationships between different spatial locations and provide the seed for correlating local patches, much like a sonographer prioritizes regions across the image. We experimentally validated the USQNet for a new dataset of the human urinary bladder ultrasound images. The validation involved first with the subjective assessment by experienced radiologists' annotation, and then with state-of-the-art CNN networks for US-IQA and its ablated counterparts. The results demonstrate that USQNet achieves a remarkable accuracy of 92.4% and outperforms the SOTA models by 3 - 14% while requiring comparable computation time 
650 4 |a Journal Article 
700 1 |a Chandrashekhara, S H  |e verfasserin  |4 aut 
700 1 |a Voyles, Richard  |e verfasserin  |4 aut 
700 1 |a Wachs, Juan  |e verfasserin  |4 aut 
700 1 |a Saha, Subir Kumar  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g PP(2024) vom: 10. Apr.  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:10  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2024.3386919  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 10  |c 04