High-Quality and Diverse Few-Shot Image Generation via Masked Discrimination

Few-shot image generation aims to generate images of high quality and great diversity with limited data. However, it is difficult for modern GANs to avoid overfitting when trained on only a few images. The discriminator can easily remember all the training samples and guide the generator to replicat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 24., Seite 2950-2965
1. Verfasser: Zhu, Jingyuan (VerfasserIn)
Weitere Verfasser: Ma, Huimin, Chen, Jiansheng, Yuan, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370877063
003 DE-627
005 20240424232157.0
007 cr uuu---uuuuu
008 240411s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3385295  |2 doi 
028 5 2 |a pubmed24n1385.xml 
035 |a (DE-627)NLM370877063 
035 |a (NLM)38598374 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Jingyuan  |e verfasserin  |4 aut 
245 1 0 |a High-Quality and Diverse Few-Shot Image Generation via Masked Discrimination 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Few-shot image generation aims to generate images of high quality and great diversity with limited data. However, it is difficult for modern GANs to avoid overfitting when trained on only a few images. The discriminator can easily remember all the training samples and guide the generator to replicate them, leading to severe diversity degradation. Several methods have been proposed to relieve overfitting by adapting GANs pre-trained on large source domains to target domains using limited real samples. This work presents masked discrimination to realize few-shot GAN adaptation, which is the first feature-level augmentation method for generative tasks. Random masks are applied to features extracted by the discriminator from input images. We aim to encourage the discriminator to judge various images that share partially common features with training samples as realistic. Correspondingly, the generator is guided to generate diverse images instead of replicating training samples. In addition, we employ a cross-domain consistency loss for the discriminator to keep relative distances between generated samples in its feature space. It strengthens global image discrimination and guides adapted GANs to preserve more information learned from source domains for higher image quality, resulting in better cross-domain correspondence. The effectiveness of our approach is demonstrated both qualitatively and quantitatively with higher quality and greater diversity on a series of few-shot image generation tasks than prior methods 
650 4 |a Journal Article 
700 1 |a Ma, Huimin  |e verfasserin  |4 aut 
700 1 |a Chen, Jiansheng  |e verfasserin  |4 aut 
700 1 |a Yuan, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 24., Seite 2950-2965  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:24  |g pages:2950-2965 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3385295  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 24  |h 2950-2965