A note on the Hendrickson-Lattman phase probability distribution and its equivalence to the generalized von Mises distribution

© Barnett and Kingston 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 2 vom: 01. Apr., Seite 492-498
1. Verfasser: Barnett, Michael J (VerfasserIn)
Weitere Verfasser: Kingston, Richard L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article circular statistics computational crystallography crystallographic phase determination probability density functions
LEADER 01000caa a22002652 4500
001 NLM370860659
003 DE-627
005 20240411233000.0
007 cr uuu---uuuuu
008 240410s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576724000311  |2 doi 
028 5 2 |a pubmed24n1372.xml 
035 |a (DE-627)NLM370860659 
035 |a (NLM)38596730 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Barnett, Michael J  |e verfasserin  |4 aut 
245 1 2 |a A note on the Hendrickson-Lattman phase probability distribution and its equivalence to the generalized von Mises distribution 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.04.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Barnett and Kingston 2024. 
520 |a Hendrickson & Lattman [Acta Cryst. (1970), B26, 136-143] introduced a method for representing crystallographic phase probabilities defined on the unit circle. Their approach could model the bimodal phase probability distributions that can result from experimental phase determination procedures. It also provided simple and highly effective means to combine independent sources of phase information. The present work discusses the equivalence of the Hendrickson-Lattman distribution and the generalized von Mises distribution of order two, which has been studied in the statistical literature. Recognizing this connection allows the Hendrickson-Lattman distribution to be expressed in an alternative form which is easier to interpret, as it involves the location and concentration parameters of the component von Mises distributions. It also allows clarification of the conditions for bimodality and access to a simplified analytical method for evaluating the trigonometric moments of the distribution, the first of which is required for computing the best Fourier synthesis in the presence of phase, but not amplitude, uncertainty 
650 4 |a Journal Article 
650 4 |a circular statistics 
650 4 |a computational crystallography 
650 4 |a crystallographic phase determination 
650 4 |a probability density functions 
700 1 |a Kingston, Richard L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), Pt 2 vom: 01. Apr., Seite 492-498  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:57  |g year:2024  |g number:Pt 2  |g day:01  |g month:04  |g pages:492-498 
856 4 0 |u http://dx.doi.org/10.1107/S1600576724000311  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e Pt 2  |b 01  |c 04  |h 492-498