DLSIA : Deep Learning for Scientific Image Analysis

© Eric J. Roberts et al. 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 2 vom: 01. Apr., Seite 392-402
1. Verfasser: Roberts, Eric J (VerfasserIn)
Weitere Verfasser: Chavez, Tanny, Hexemer, Alexander, Zwart, Petrus H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article X-ray scattering convolutional neural networks data compression deep learning tomography
LEADER 01000caa a22002652 4500
001 NLM370860586
003 DE-627
005 20240411233000.0
007 cr uuu---uuuuu
008 240410s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576724001390  |2 doi 
028 5 2 |a pubmed24n1372.xml 
035 |a (DE-627)NLM370860586 
035 |a (NLM)38596727 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Roberts, Eric J  |e verfasserin  |4 aut 
245 1 0 |a DLSIA  |b Deep Learning for Scientific Image Analysis 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.04.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Eric J. Roberts et al. 2024. 
520 |a DLSIA (Deep Learning for Scientific Image Analysis) is a Python-based machine learning library that empowers scientists and researchers across diverse scientific domains with a range of customizable convolutional neural network (CNN) architectures for a wide variety of tasks in image analysis to be used in downstream data processing. DLSIA features easy-to-use architectures, such as autoencoders, tunable U-Nets and parameter-lean mixed-scale dense networks (MSDNets). Additionally, this article introduces sparse mixed-scale networks (SMSNets), generated using random graphs, sparse connections and dilated convolutions connecting different length scales. For verification, several DLSIA-instantiated networks and training scripts are employed in multiple applications, including inpainting for X-ray scattering data using U-Nets and MSDNets, segmenting 3D fibers in X-ray tomographic reconstructions of concrete using an ensemble of SMSNets, and leveraging autoencoder latent spaces for data compression and clustering. As experimental data continue to grow in scale and complexity, DLSIA provides accessible CNN construction and abstracts CNN complexities, allowing scientists to tailor their machine learning approaches, accelerate discoveries, foster interdisciplinary collaboration and advance research in scientific image analysis 
650 4 |a Journal Article 
650 4 |a X-ray scattering 
650 4 |a convolutional neural networks 
650 4 |a data compression 
650 4 |a deep learning 
650 4 |a tomography 
700 1 |a Chavez, Tanny  |e verfasserin  |4 aut 
700 1 |a Hexemer, Alexander  |e verfasserin  |4 aut 
700 1 |a Zwart, Petrus H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), Pt 2 vom: 01. Apr., Seite 392-402  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:57  |g year:2024  |g number:Pt 2  |g day:01  |g month:04  |g pages:392-402 
856 4 0 |u http://dx.doi.org/10.1107/S1600576724001390  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e Pt 2  |b 01  |c 04  |h 392-402