SEB : a computational tool for symbolic derivation of the small-angle scattering from complex composite structures

© Jarrett and Svaneborg 2024.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 57(2024), Pt 2 vom: 01. Apr., Seite 587-601
1. Verfasser: Jarrett, Tobias W J (VerfasserIn)
Weitere Verfasser: Svaneborg, Carsten
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article SANS SAXS computational tools data analysis small-angle X-ray scattering small-angle neutron scattering
LEADER 01000caa a22002652 4500
001 NLM370860551
003 DE-627
005 20240411232959.0
007 cr uuu---uuuuu
008 240410s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576724001729  |2 doi 
028 5 2 |a pubmed24n1372.xml 
035 |a (DE-627)NLM370860551 
035 |a (NLM)38596723 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jarrett, Tobias W J  |e verfasserin  |4 aut 
245 1 0 |a SEB  |b a computational tool for symbolic derivation of the small-angle scattering from complex composite structures 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.04.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Jarrett and Svaneborg 2024. 
520 |a Analysis of small-angle scattering (SAS) data requires intensive modeling to infer and characterize the structures present in a sample. This iterative improvement of models is a time-consuming process. Presented here is Scattering Equation Builder (SEB), a C++ library that derives exact analytic expressions for the form factors of complex composite structures. The user writes a small program that specifies how the sub-units should be linked to form a composite structure and calls SEB to obtain an expression for the form factor. SEB supports e.g. Gaussian polymer chains and loops, thin rods and circles, solid spheres, spherical shells and cylinders, and many different options for how these can be linked together. The formalism behind SEB is presented and simple case studies are given, such as block copolymers with different types of linkage, as well as more complex examples, such as a random walk model of 100 linked sub-units, dendrimers, polymers and rods attached to the surfaces of geometric objects, and finally the scattering from a linear chain of five stars, where each star is built up of four diblock copolymers. These examples illustrate how SEB can be used to develop complex models and hence reduce the cost of analyzing SAS data 
650 4 |a Journal Article 
650 4 |a SANS 
650 4 |a SAXS 
650 4 |a computational tools 
650 4 |a data analysis 
650 4 |a small-angle X-ray scattering 
650 4 |a small-angle neutron scattering 
700 1 |a Svaneborg, Carsten  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 57(2024), Pt 2 vom: 01. Apr., Seite 587-601  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:57  |g year:2024  |g number:Pt 2  |g day:01  |g month:04  |g pages:587-601 
856 4 0 |u http://dx.doi.org/10.1107/S1600576724001729  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 57  |j 2024  |e Pt 2  |b 01  |c 04  |h 587-601