Source-Guided Target Feature Reconstruction for Cross-Domain Classification and Detection

Existing cross-domain classification and detection methods usually apply a consistency constraint between the target sample and its self-augmentation for unsupervised learning without considering the essential source knowledge. In this paper, we propose a Source-guided Target Feature Reconstruction...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 09., Seite 2808-2822
1. Verfasser: Jiao, Yifan (VerfasserIn)
Weitere Verfasser: Yao, Hantao, Bao, Bing-Kun, Xu, Changsheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM370823621
003 DE-627
005 20250306013638.0
007 cr uuu---uuuuu
008 240410s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3384766  |2 doi 
028 5 2 |a pubmed25n1235.xml 
035 |a (DE-627)NLM370823621 
035 |a (NLM)38593019 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jiao, Yifan  |e verfasserin  |4 aut 
245 1 0 |a Source-Guided Target Feature Reconstruction for Cross-Domain Classification and Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing cross-domain classification and detection methods usually apply a consistency constraint between the target sample and its self-augmentation for unsupervised learning without considering the essential source knowledge. In this paper, we propose a Source-guided Target Feature Reconstruction (STFR) module for cross-domain visual tasks, which applies source visual words to reconstruct the target features. Since the reconstructed target features contain the source knowledge, they can be treated as a bridge to connect the source and target domains. Therefore, using them for consistency learning can enhance the target representation and reduce the domain bias. Technically, source visual words are selected and updated according to the source feature distribution, and applied to reconstruct the given target feature via a weighted combination strategy. After that, consistency constraints are built between the reconstructed and original target features for domain alignment. Furthermore, STFR is connected with the optimal transportation algorithm theoretically, which explains the rationality of the proposed module. Extensive experiments on nine benchmarks and two cross-domain visual tasks prove the effectiveness of the proposed STFR module, e.g., 1) cross-domain image classification: obtaining average accuracy of 91.0%, 73.9%, and 87.4% on Office-31, Office-Home, and VisDA-2017, respectively; 2) cross-domain object detection: obtaining mAP of 44.50% on Cityscapes → Foggy Cityscapes, AP on car of 78.10% on Cityscapes → KITTI, MR -2 of 8.63%, 12.27%, 22.10%, and 40.58% on COCOPersons → Caltech, CityPersons → Caltech, COCOPersons → CityPersons, and Caltech → CityPersons, respectively 
650 4 |a Journal Article 
700 1 |a Yao, Hantao  |e verfasserin  |4 aut 
700 1 |a Bao, Bing-Kun  |e verfasserin  |4 aut 
700 1 |a Xu, Changsheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 09., Seite 2808-2822  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:09  |g pages:2808-2822 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3384766  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 09  |h 2808-2822