Convergence Analysis of Mean Shift

The mean shift (MS) algorithm seeks a mode of the kernel density estimate (KDE). This study presents a convergence guarantee of the mode estimate sequence generated by the MS algorithm and an evaluation of the convergence rate, under fairly mild conditions, with the help of the argument concerning t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 10 vom: 01. Sept., Seite 6688-6698
1. Verfasser: Yamasaki, Ryoya (VerfasserIn)
Weitere Verfasser: Tanaka, Toshiyuki
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370773705
003 DE-627
005 20240906232645.0
007 cr uuu---uuuuu
008 240409s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3385920  |2 doi 
028 5 2 |a pubmed24n1525.xml 
035 |a (DE-627)NLM370773705 
035 |a (NLM)38587962 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yamasaki, Ryoya  |e verfasserin  |4 aut 
245 1 0 |a Convergence Analysis of Mean Shift 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The mean shift (MS) algorithm seeks a mode of the kernel density estimate (KDE). This study presents a convergence guarantee of the mode estimate sequence generated by the MS algorithm and an evaluation of the convergence rate, under fairly mild conditions, with the help of the argument concerning the Łojasiewicz inequality. Our findings extend existing ones covering analytic kernels and the Epanechnikov kernel. Those are significant in that they cover the biweight kernel, which is optimal among non-negative kernels in terms of the asymptotic statistical efficiency for the KDE-based mode estimation 
650 4 |a Journal Article 
700 1 |a Tanaka, Toshiyuki  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 10 vom: 01. Sept., Seite 6688-6698  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:10  |g day:01  |g month:09  |g pages:6688-6698 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3385920  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 10  |b 01  |c 09  |h 6688-6698