|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM370773705 |
003 |
DE-627 |
005 |
20240906232645.0 |
007 |
cr uuu---uuuuu |
008 |
240409s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2024.3385920
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1525.xml
|
035 |
|
|
|a (DE-627)NLM370773705
|
035 |
|
|
|a (NLM)38587962
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yamasaki, Ryoya
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Convergence Analysis of Mean Shift
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 06.09.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The mean shift (MS) algorithm seeks a mode of the kernel density estimate (KDE). This study presents a convergence guarantee of the mode estimate sequence generated by the MS algorithm and an evaluation of the convergence rate, under fairly mild conditions, with the help of the argument concerning the Łojasiewicz inequality. Our findings extend existing ones covering analytic kernels and the Epanechnikov kernel. Those are significant in that they cover the biweight kernel, which is optimal among non-negative kernels in terms of the asymptotic statistical efficiency for the KDE-based mode estimation
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Tanaka, Toshiyuki
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 10 vom: 01. Sept., Seite 6688-6698
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:10
|g day:01
|g month:09
|g pages:6688-6698
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2024.3385920
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 10
|b 01
|c 09
|h 6688-6698
|