A Closed-Form, Pairwise Solution to Local Non-Rigid Structure-From-Motion

A recent trend in Non-Rigid Structure-from-Motion (NRSfM) is to express local, differential constraints between pairs of images, from which the surface normal at any point can be obtained by solving a system of polynomial equations. While this approach is more successful than its counterparts relyin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 11 vom: 08. Okt., Seite 7027-7040
1. Verfasser: Parashar, Shaifali (VerfasserIn)
Weitere Verfasser: Long, Yuxuan, Salzmann, Mathieu, Fua, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370682653
003 DE-627
005 20241004232031.0
007 cr uuu---uuuuu
008 240406s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3383316  |2 doi 
028 5 2 |a pubmed24n1557.xml 
035 |a (DE-627)NLM370682653 
035 |a (NLM)38578851 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Parashar, Shaifali  |e verfasserin  |4 aut 
245 1 2 |a A Closed-Form, Pairwise Solution to Local Non-Rigid Structure-From-Motion 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A recent trend in Non-Rigid Structure-from-Motion (NRSfM) is to express local, differential constraints between pairs of images, from which the surface normal at any point can be obtained by solving a system of polynomial equations. While this approach is more successful than its counterparts relying on global constraints, the resulting methods face two main problems: First, most of the equation systems they formulate are of high degree and must be solved using computationally expensive polynomial solvers. Some methods use polynomial reduction strategies to simplify the system, but this adds some phantom solutions. In any event, an additional mechanism is employed to pick the best solution, which adds to the computation without any guarantees on the reliability of the solution. Second, these methods formulate constraints between a pair of images. Even if there is enough motion between them, they may suffer from local degeneracies that make the resulting estimates unreliable without any warning mechanism. In this paper, we solve these problems for isometric/conformal NRSfM. We show that, under widely applicable assumptions, we can derive a new system of equations in terms of the surface normals, whose two solutions can be obtained in closed-form and can easily be disambiguated locally. Our formalism also allows us to assess how reliable the estimated local normals are and to discard them if they are not. Our experiments show that our reconstructions, obtained from two or more views, are significantly more accurate than those of state-of-the-art methods, while also being faster 
650 4 |a Journal Article 
700 1 |a Long, Yuxuan  |e verfasserin  |4 aut 
700 1 |a Salzmann, Mathieu  |e verfasserin  |4 aut 
700 1 |a Fua, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 11 vom: 08. Okt., Seite 7027-7040  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:11  |g day:08  |g month:10  |g pages:7027-7040 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3383316  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 11  |b 08  |c 10  |h 7027-7040