Electronic Spin Alignment within Homologous NiS2/NiSe2 Heterostructures to Promote Sulfur Redox Kinetics in Lithium-Sulfur Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 25 vom: 19. Juni, Seite e2400810
1. Verfasser: Huang, Chen (VerfasserIn)
Weitere Verfasser: Yu, Jing, Zhang, Chao Yue, Cui, Zhibiao, Chen, Jiakun, Lai, Wei-Hong, Lei, Yao-Jie, Nan, Bingfei, Lu, Xuan, He, Ren, Gong, Li, Li, Junshan, Li, Canhuang, Qi, Xuede, Xue, Qian, Zhou, Jin Yuan, Qi, Xueqiang, Balcells, Lluís, Arbiol, Jordi, Cabot, Andreu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article hollow particle homologous heterostructure lithium polysulfides lithium‐sulfur battery nickel selenide nickel sulfide spin state
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
The catalytic activation of the Li-S reaction is fundamental to maximize the capacity and stability of Li-S batteries (LSBs). Current research on Li-S catalysts mainly focuses on optimizing the energy levels to promote adsorption and catalytic conversion, while frequently overlooking the electronic spin state influence on charge transfer and orbital interactions. Here, hollow NiS2/NiSe2 heterostructures encapsulated in a nitrogen-doped carbon matrix (NiS2/NiSe2NC) are synthesized and used as a catalytic additive in sulfur cathodes. The NiS2/NiSe2 heterostructure promotes the spin splitting of the 3d orbital, driving the Ni3+ transformation from low to high spin. This high spin configuration raises the electronic energy level and activates the electronic state. This accelerates the charge transfer and optimizes the adsorption energy, lowering the reaction energy barrier of the polysulfides conversion. Benefiting from these characteristics, LSBs based on NiS2/NiSe2@NC/S cathodes exhibit high initial capacity (1458 mAh·g⁻1 at 0.1C), excellent rate capability (572 mAh·g⁻1 at 5C), and stable cycling with an average capacity decay rate of only 0.025% per cycle at 1C during 500 cycles. Even at high sulfur loadings (6.2 mg·cm⁻2), high initial capacities of 1173 mAh·g⁻1 (7.27 mAh·cm⁻2) are measured at 0.1C, and 1058 mAh·g⁻1 is retained after 300 cycles
Beschreibung:Date Revised 20.07.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202400810