Dimension Reduction With Prior Information for Knowledge Discovery

This paper addresses the problem of mapping high-dimensional data to a low-dimensional space, in the presence of other known features. This problem is ubiquitous in science and engineering as there are often controllable/measurable features in most applications. To solve this problem, this paper pro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 02. Apr., Seite 3625-3636
1. Verfasser: Bui, Anh Tuan (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM37058208X
003 DE-627
005 20240404235633.0
007 cr uuu---uuuuu
008 240404s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3346212  |2 doi 
028 5 2 |a pubmed24n1365.xml 
035 |a (DE-627)NLM37058208X 
035 |a (NLM)38568778 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bui, Anh Tuan  |e verfasserin  |4 aut 
245 1 0 |a Dimension Reduction With Prior Information for Knowledge Discovery 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.04.2024 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper addresses the problem of mapping high-dimensional data to a low-dimensional space, in the presence of other known features. This problem is ubiquitous in science and engineering as there are often controllable/measurable features in most applications. To solve this problem, this paper proposes a broad class of methods, which is referred to as conditional multidimensional scaling (MDS). An algorithm for optimizing the objective function of conditional MDS is also developed. The convergence of this algorithm is proven under mild assumptions. Conditional MDS is illustrated with kinship terms, facial expressions, textile fabrics, car-brand perception, and cylinder machining examples. These examples demonstrate the advantages of conditional MDS over conventional dimension reduction in improving the estimation quality of the reduced-dimension space and simplifying visualization and knowledge discovery tasks. Computer codes for this work are available in the open-source cml R package 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 5 vom: 02. Apr., Seite 3625-3636  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:5  |g day:02  |g month:04  |g pages:3625-3636 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3346212  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 5  |b 02  |c 04  |h 3625-3636