Experimental Demonstration of Reservoir Computing with Self-Assembled Percolating Networks of Nanoparticles

© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 29 vom: 27. Juli, Seite e2402319
1. Verfasser: Mallinson, Joshua B (VerfasserIn)
Weitere Verfasser: Steel, Jamie K, Heywood, Zachary E, Studholme, Sofie J, Bones, Philip J, Brown, Simon A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article nanoparticle networks neuromorphic computing percolation reservoir computing self‐assembly
LEADER 01000caa a22002652 4500
001 NLM370479424
003 DE-627
005 20240718232805.0
007 cr uuu---uuuuu
008 240403s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202402319  |2 doi 
028 5 2 |a pubmed24n1474.xml 
035 |a (DE-627)NLM370479424 
035 |a (NLM)38558447 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mallinson, Joshua B  |e verfasserin  |4 aut 
245 1 0 |a Experimental Demonstration of Reservoir Computing with Self-Assembled Percolating Networks of Nanoparticles 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. 
520 |a The complex self-assembled network of neurons and synapses that comprises the biological brain enables natural information processing with remarkable efficiency. Percolating networks of nanoparticles (PNNs) are complex self-assembled nanoscale systems that have been shown to possess many promising brain-like attributes and which are therefore appealing systems for neuromorphic computation. Here experiments are performed that show that PNNs can be utilized as physical reservoirs within a nanoelectronic reservoir computing framework and demonstrate successful computation for several benchmark tasks (chaotic time series prediction, nonlinear transformation, and memory capacity). For each task, relevant literature results are compiled and it is shown that the performance of the PNNs compares favorably to that previously reported from nanoelectronic reservoirs. It is then demonstrated experimentally that PNNs can be used for spoken digit recognition with state-of-the-art accuracy. Finally, a parallel reservoir architecture is emulated, which increases the dimensionality and richness of the reservoir outputs and results in further improvements in performance across all tasks 
650 4 |a Journal Article 
650 4 |a nanoparticle networks 
650 4 |a neuromorphic computing 
650 4 |a percolation 
650 4 |a reservoir computing 
650 4 |a self‐assembly 
700 1 |a Steel, Jamie K  |e verfasserin  |4 aut 
700 1 |a Heywood, Zachary E  |e verfasserin  |4 aut 
700 1 |a Studholme, Sofie J  |e verfasserin  |4 aut 
700 1 |a Bones, Philip J  |e verfasserin  |4 aut 
700 1 |a Brown, Simon A  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 29 vom: 27. Juli, Seite e2402319  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:29  |g day:27  |g month:07  |g pages:e2402319 
856 4 0 |u http://dx.doi.org/10.1002/adma.202402319  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 29  |b 27  |c 07  |h e2402319