Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration

The deep unfolding approach has attracted significant attention in computer vision tasks, which well connects conventional image processing modeling manners with more recent deep learning techniques. Specifically, by establishing a direct correspondence between algorithm operators at each implementa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 10 vom: 01. Okt., Seite 6577-6593
1. Verfasser: Fu, Jiahong (VerfasserIn)
Weitere Verfasser: Xie, Qi, Meng, Deyu, Xu, Zongben
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM370471229
003 DE-627
005 20250306004250.0
007 cr uuu---uuuuu
008 240403s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3383532  |2 doi 
028 5 2 |a pubmed25n1234.xml 
035 |a (DE-627)NLM370471229 
035 |a (NLM)38557620 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Jiahong  |e verfasserin  |4 aut 
245 1 0 |a Rotation Equivariant Proximal Operator for Deep Unfolding Methods in Image Restoration 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The deep unfolding approach has attracted significant attention in computer vision tasks, which well connects conventional image processing modeling manners with more recent deep learning techniques. Specifically, by establishing a direct correspondence between algorithm operators at each implementation step and network modules within each layer, one can rationally construct an almost "white box" network architecture with high interpretability. In this architecture, only the predefined component of the proximal operator, known as a proximal network, needs manual configuration, enabling the network to automatically extract intrinsic image priors in a data-driven manner. In current deep unfolding methods, such a proximal network is generally designed as a CNN architecture, whose necessity has been proven by a recent theory. That is, CNN structure substantially delivers the translational symmetry image prior, which is the most universally possessed structural prior across various types of images. However, standard CNN-based proximal networks have essential limitations in capturing the rotation symmetry prior, another universal structural prior underlying general images. This leaves a large room for further performance improvement in deep unfolding approaches. To address this issue, this study makes efforts to suggest a high-accuracy rotation equivariant proximal network that effectively embeds rotation symmetry priors into the deep unfolding framework. Especially, we deduce, for the first time, the theoretical equivariant error for such a designed proximal network with arbitrary layers under arbitrary rotation degrees. This analysis should be the most refined theoretical conclusion for such error evaluation to date and is also indispensable for supporting the rationale behind such networks with intrinsic interpretability requirements. Through experimental validation on different vision tasks, including blind image super-resolution, medical image reconstruction, and image de-raining, the proposed method is validated to be capable of directly replacing the proximal network in current deep unfolding architecture and readily enhancing their state-of-the-art performance. This indicates its potential usability in general vision tasks 
650 4 |a Journal Article 
700 1 |a Xie, Qi  |e verfasserin  |4 aut 
700 1 |a Meng, Deyu  |e verfasserin  |4 aut 
700 1 |a Xu, Zongben  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 10 vom: 01. Okt., Seite 6577-6593  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:10  |g day:01  |g month:10  |g pages:6577-6593 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3383532  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 10  |b 01  |c 10  |h 6577-6593