DiatomiteMoS2 Nanocomposite Layers as Composite Coating Targeting for Mg Alloys Endowed with Properties of Anticorrosion and Antiwear

Molybdenum disulfide (MoS2) demonstrates promising applications in enhancing the corrosion and wear resistance of metals, but the susceptibility of this nanomaterial to agglomeration hinders its overall performance. In this study, the externally assisted corrosion inhibitor sodium molybdate (SM) was...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 15 vom: 16. Apr., Seite 8233-8247
1. Verfasser: Lu, Wei (VerfasserIn)
Weitere Verfasser: Zhang, Xinfang, Yin, Changqing, Zhao, Wei, Liu, Shupei, Rao, Jinsong, Zhang, Yu Xin, Liu, Xiaoying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Molybdenum disulfide (MoS2) demonstrates promising applications in enhancing the corrosion and wear resistance of metals, but the susceptibility of this nanomaterial to agglomeration hinders its overall performance. In this study, the externally assisted corrosion inhibitor sodium molybdate (SM) was successfully constructed in diatomaceous earth (DE) and molybdenum disulfide (MoS2). This not only served as a molybdenum source for MoS2 but also enabled the preparation of DEMoS2-SM microcapsules, achieving a corrosion inhibitor loading of up to 23.23%. The corrosion testing reveals that the composite coating, when compared to the pure epoxy coating, exhibits an impedance modulus 2 orders of magnitude higher (1.80 × 109 Ω·cm2), offering prolonged protection for magnesium alloys over a 40 day period. Furthermore, a filler content of 3% sustains a coefficient of friction (COF) at 0.55 for an extended duration, indicating commendable stability and wear resistance. The protective performance is ascribed to the synergistic enhancement of corrosion and wear resistance in the coatings, facilitated by the pore structure of DE, the high hardness of MoS2, and the obstructive influence of Na2MoO4. This approach offers a straightforward and efficient means of designing microcapsules for use in corrosive environments, whose application can be extended in industrial fields. In particular, we promote the application of nautical instruments, underwater weapons, and seawater batteries in the shipbuilding industry and marine engineering
Beschreibung:Date Revised 16.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.4c00461