Anomalous Detachment Behavior and Directional Reconstruction Regulation of Leaching-Type Precatalysts for Industrial Water Electrolyzers
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 24 vom: 30. Juni, Seite e2313931 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article directionally reconstructed catalyst dual site regulation laboratory versus industrial conditions real‐time monitoring reconstruction and detachment behavior |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Current reconstruction chemistry studies are mainly operated at the laboratory scale, where the operating parameters are different from those used in industrial water electrolyzers. This gap leads to unclear reconstruction behaviors under industrial conditions and constrains the application of catalysts. Here, this work presents a new reconstruction mechanism and anomalous detachment phenomena observed in leaching-type oxygen-evolving precatalysts under industrial conditions, different from the reported results obtained under laboratory conditions. The identified detachment issues are closely linked to the production of a potassium salt separate phase, which proves sensitive to the local environment, and its instability easily leads to catalyst stripping from the substrate. By establishing detachment critical point and operating parameter-detachment correlation, a targeted reconstruction strategy is proposed to achieve smooth ligand leaching and effectively solve the detachment issue. Theoretical analyses validate the dual-site regulation in directionally reconstructed catalysts with optimized intermediate adsorption. Under industrial conditions, the coupled electrolyzer delivers an industrial-level current density at low cell voltage with prolonged durability, 1 A cm-2 at 2 V for over 340 h. This work bridges the gap of leaching-type precatalysts between laboratory test conditions and industrial operating conditions |
---|---|
Beschreibung: | Date Revised 13.06.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202313931 |