Anomaly Detection for Medical Images Using Heterogeneous Auto-Encoder

Anomaly detection is an important task for medical image analysis, which can alleviate the reliance of supervised methods on large labelled datasets. Most existing methods use a pixel-wise self-reconstruction framework for anomaly detection. However, there are two challenges of these studies: 1) the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 09., Seite 2770-2782
1. Verfasser: Lu, Shuai (VerfasserIn)
Weitere Verfasser: Zhang, Weihang, Zhao, He, Liu, Hanruo, Wang, Ningli, Li, Huiqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370413555
003 DE-627
005 20240410232819.0
007 cr uuu---uuuuu
008 240331s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3381435  |2 doi 
028 5 2 |a pubmed24n1371.xml 
035 |a (DE-627)NLM370413555 
035 |a (NLM)38551828 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Shuai  |e verfasserin  |4 aut 
245 1 0 |a Anomaly Detection for Medical Images Using Heterogeneous Auto-Encoder 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.04.2024 
500 |a Date Revised 10.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Anomaly detection is an important task for medical image analysis, which can alleviate the reliance of supervised methods on large labelled datasets. Most existing methods use a pixel-wise self-reconstruction framework for anomaly detection. However, there are two challenges of these studies: 1) they tend to overfit learning an identity mapping between the input and output, which leads to failure in detecting abnormal samples; 2) the reconstruction considers the pixel-wise differences which may lead to an undesirable result. To mitigate the above problems, we propose a novel heterogeneous Auto-Encoder (Hetero-AE) for medical anomaly detection. Our model utilizes a convolutional neural network (CNN) as the encoder and a hybrid CNN-Transformer network as the decoder. The heterogeneous structure enables the model to learn the intrinsic information of normal data and enlarge the difference on abnormal samples. To fully exploit the effectiveness of Transformer in the hybrid network, a multi-scale sparse Transformer block is proposed to trade off modelling long-range feature dependencies and high computational costs. Moreover, the multi-stage feature comparison is introduced to reduce the noise of pixel-wise comparison. Extensive experiments on four public datasets (i.e., retinal OCT, chest X-ray, brain MRI, and COVID-19) verify the effectiveness of our method on different imaging modalities for anomaly detection. Additionally, our method can accurately detect tumors in brain MRI and lesions in retinal OCT with interpretable heatmaps to locate lesion areas, assisting clinicians in diagnosing abnormalities efficiently 
650 4 |a Journal Article 
700 1 |a Zhang, Weihang  |e verfasserin  |4 aut 
700 1 |a Zhao, He  |e verfasserin  |4 aut 
700 1 |a Liu, Hanruo  |e verfasserin  |4 aut 
700 1 |a Wang, Ningli  |e verfasserin  |4 aut 
700 1 |a Li, Huiqi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 09., Seite 2770-2782  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:09  |g pages:2770-2782 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3381435  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 09  |h 2770-2782