Region Aware Video Object Segmentation With Deep Motion Modeling

Current semi-supervised video object segmentation (VOS) methods often employ the entire features of one frame to predict object masks and update memory. This introduces significant redundant computations. To reduce redundancy, we introduce a Region Aware Video Object Segmentation (RAVOS) approach, w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 29., Seite 2639-2651
1. Verfasser: Miao, Bo (VerfasserIn)
Weitere Verfasser: Bennamoun, Mohammed, Gao, Yongsheng, Mian, Ajmal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Current semi-supervised video object segmentation (VOS) methods often employ the entire features of one frame to predict object masks and update memory. This introduces significant redundant computations. To reduce redundancy, we introduce a Region Aware Video Object Segmentation (RAVOS) approach, which predicts regions of interest (ROIs) for efficient object segmentation and memory storage. RAVOS includes a fast object motion tracker to predict object ROIs in the next frame. For efficient segmentation, object features are extracted based on the ROIs, and an object decoder is designed for object-level segmentation. For efficient memory storage, we propose motion path memory to filter out redundant context by memorizing the features within the motion path of objects. In addition to RAVOS, we also propose a large-scale occluded VOS dataset, dubbed OVOS, to benchmark the performance of VOS models under occlusions. Evaluation on DAVIS and YouTube-VOS benchmarks and our new OVOS dataset show that our method achieves state-of-the-art performance with significantly faster inference time, e.g., 86.1 J & F at 42 FPS on DAVIS and 84.4 J & F at 23 FPS on YouTube-VOS. Project page: ravos.netlify.app
Beschreibung:Date Revised 03.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2024.3381445