Weather-Based Logistic Regression Models for Predicting Wheat Head Blast Epidemics

Wheat head blast is a major disease of wheat in the Brazilian Cerrado. Empirical models for predicting epidemics were developed using data from field trials conducted in Patos de Minas (2013 to 2019) and trials conducted across 10 other sites (2012 to 2020) in Brazil, resulting in 143 epidemics, wit...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 108(2024), 7 vom: 28. Juli, Seite 2206-2213
1. Verfasser: De Cól, Monalisa (VerfasserIn)
Weitere Verfasser: Coelho, Mauricio, Del Ponte, Emerson M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article Magnaporthe oryzae Triticum aestivum prediction models
LEADER 01000caa a22002652c 4500
001 NLM370388100
003 DE-627
005 20250306002941.0
007 cr uuu---uuuuu
008 240330s2024 xx |||||o 00| ||eng c
024 7 |a 10.1094/PDIS-11-23-2513-RE  |2 doi 
028 5 2 |a pubmed25n1234.xml 
035 |a (DE-627)NLM370388100 
035 |a (NLM)38549278 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a De Cól, Monalisa  |e verfasserin  |4 aut 
245 1 0 |a Weather-Based Logistic Regression Models for Predicting Wheat Head Blast Epidemics 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.07.2024 
500 |a Date Revised 15.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Wheat head blast is a major disease of wheat in the Brazilian Cerrado. Empirical models for predicting epidemics were developed using data from field trials conducted in Patos de Minas (2013 to 2019) and trials conducted across 10 other sites (2012 to 2020) in Brazil, resulting in 143 epidemics, with each being classified as either outbreak (≥20% head blast incidence) or nonoutbreak. Daily weather variables were collected from the National Aeronautics and Space Administration (NASA) Prediction of Worldwide Energy Resources (POWER) website and summarized for each epidemic. Wheat heading date (WHD) served to define four time windows, with each comprising two 7-day intervals (before and after WHD), which combined with weather-based variables resulted in 36 predictors (nine weather variables × four windows). Logistic regression models were fitted to binary data, with variable selection using least absolute shrinkage and selection operator (LASSO) and sequentially best subset analyses. The models were validated using the leave-one-out cross-validation (LOOCV) technique, and their statistical performance was compared. One model was selected, implemented in a 24-year series, and assessed by experts and literature. Models with two to five predictors showed accuracies between 0.80 and 0.85, sensitivities from 0.80 to 0.91, specificities from 0.72 to 0.86, and area under the curve (AUC) from 0.89 to 0.91. The accuracy of LOOCV ranged from 0.76 to 0.81. The model applied to a historical series included temperature and relative humidity in preheading date, as well as postheading precipitation. The model accurately predicted the occurrence of outbreaks, aligning closely with real-world observations, specifically tailored for locations with tropical and subtropical climates 
650 4 |a Journal Article 
650 4 |a Magnaporthe oryzae 
650 4 |a Triticum aestivum 
650 4 |a prediction models 
700 1 |a Coelho, Mauricio  |e verfasserin  |4 aut 
700 1 |a Del Ponte, Emerson M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant disease  |d 1997  |g 108(2024), 7 vom: 28. Juli, Seite 2206-2213  |w (DE-627)NLM098181742  |x 0191-2917  |7 nnas 
773 1 8 |g volume:108  |g year:2024  |g number:7  |g day:28  |g month:07  |g pages:2206-2213 
856 4 0 |u http://dx.doi.org/10.1094/PDIS-11-23-2513-RE  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 108  |j 2024  |e 7  |b 28  |c 07  |h 2206-2213