Tackling Noisy Labels With Network Parameter Additive Decomposition

Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the ability to memorize all noisy data, they would first memorize clean training data, a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 9 vom: 01. Aug., Seite 6341-6354
1. Verfasser: Wang, Jingyi (VerfasserIn)
Weitere Verfasser: Xia, Xiaobo, Lan, Long, Wu, Xinghao, Yu, Jun, Yang, Wenjing, Han, Bo, Liu, Tongliang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370365275
003 DE-627
005 20240807232537.0
007 cr uuu---uuuuu
008 240330s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3382138  |2 doi 
028 5 2 |a pubmed24n1494.xml 
035 |a (DE-627)NLM370365275 
035 |a (NLM)38546996 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Jingyi  |e verfasserin  |4 aut 
245 1 0 |a Tackling Noisy Labels With Network Parameter Additive Decomposition 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Given data with noisy labels, over-parameterized deep networks suffer overfitting mislabeled data, resulting in poor generalization. The memorization effect of deep networks shows that although the networks have the ability to memorize all noisy data, they would first memorize clean training data, and then gradually memorize mislabeled training data. A simple and effective method that exploits the memorization effect to combat noisy labels is early stopping. However, early stopping cannot distinguish the memorization of clean data and mislabeled data, resulting in the network still inevitably overfitting mislabeled data in the early training stage. In this paper, to decouple the memorization of clean data and mislabeled data, and further reduce the side effect of mislabeled data, we perform additive decomposition on network parameters. Namely, all parameters are additively decomposed into two groups, i.e., parameters w are decomposed as w=σ+γ. Afterward, the parameters σ are considered to memorize clean data, while the parameters γ are considered to memorize mislabeled data. Benefiting from the memorization effect, the updates of the parameters σ are encouraged to fully memorize clean data in early training, and then discouraged with the increase of training epochs to reduce interference of mislabeled data. The updates of the parameters γ are the opposite. In testing, only the parameters σ are employed to enhance generalization. Extensive experiments on both simulated and real-world benchmarks confirm the superior performance of our method 
650 4 |a Journal Article 
700 1 |a Xia, Xiaobo  |e verfasserin  |4 aut 
700 1 |a Lan, Long  |e verfasserin  |4 aut 
700 1 |a Wu, Xinghao  |e verfasserin  |4 aut 
700 1 |a Yu, Jun  |e verfasserin  |4 aut 
700 1 |a Yang, Wenjing  |e verfasserin  |4 aut 
700 1 |a Han, Bo  |e verfasserin  |4 aut 
700 1 |a Liu, Tongliang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 9 vom: 01. Aug., Seite 6341-6354  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:9  |g day:01  |g month:08  |g pages:6341-6354 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3382138  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 9  |b 01  |c 08  |h 6341-6354