Development of a Long-Amplicon Propidium Monoazide-Quantitative PCR Assay for Detection of Viable Xanthomonas arboricola pv. pruni Cells in Peach Trees

Bacterial spot is one of the most serious diseases of peach caused by the pathogen Xanthomonas arboricola pv. pruni (XAP), leading to early defoliation and unmarketable fruit. The pathogen can overwinter in peach twigs and form spring cankers, which are considered the primary inoculum source for ear...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant disease. - 1997. - 108(2024), 7 vom: 27. Juli, Seite 2190-2196
1. Verfasser: Panth, Milan (VerfasserIn)
Weitere Verfasser: Noh, Enoch, Schnabel, Guido, Wang, Hehe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant disease
Schlagworte:Journal Article bacterial spot lysozyme pathogen detection peach quantification viability-qPCR Azides Propidium 36015-30-2 mehr... propidium monoazide DNA, Bacterial
Beschreibung
Zusammenfassung:Bacterial spot is one of the most serious diseases of peach caused by the pathogen Xanthomonas arboricola pv. pruni (XAP), leading to early defoliation and unmarketable fruit. The pathogen can overwinter in peach twigs and form spring cankers, which are considered the primary inoculum source for early season leaf and fruitlet infection. The amount of overwintering bacterial inoculum plays a critical role for the bacterial spot development, but no reliable quantification method is available. Thus, we developed a long-amplicon propidium monoazide (PMA)-quantitative PCR (qPCR) assay for specific detection of viable XAP cells. The optimized PMA-qPCR assay used 20 μM of PMAxx for pure bacterial suspensions and 100 μM for peach twig tissues. The Qiagen Plant Pro Kit with an additional lysozyme digestion step was the DNA extraction protocol that yielded the best detection sensitivity with the bacteria-spiked peach twig extracts. The PMA-qPCR assay was tested with different mixtures of viable and heat-killed XAP cells in pure bacterial suspensions and bacteria-spiked peach twig tissues. The results showed that this assay enabled sensitive, specific, and accurate quantification of viable XAP cells as low as 103 CFU/ml with the presence of up to 107 CFU/ml of dead XAP cells, while suppressing the amplification of DNA from dead cells. For mixtures of viable and dead cells, the PMA-qPCR results were linearly correlated with the predicted concentrations of viable XAP (R2 > 0.98). Thus, the PMA-qPCR assay will be a suitable tool for quantifying overwintering XAP population on peach trees
Beschreibung:Date Completed 15.07.2024
Date Revised 15.07.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:0191-2917
DOI:10.1094/PDIS-01-24-0012-RE